2ちゃんねる ■掲示板に戻る■ 全部 1- 最新50    

■ このスレッドは過去ログ倉庫に格納されています

不等式への招待 第10章

1 :不等式ヲタ ( ゚∀゚):2018/12/18(火) 21:47:07.65 ID:e1oKVpnI.net
ある人は蝶を集め、ある人は切手を収集し、ある人は不等式を集める…
          ___          ----- 参考文献〔3〕 P.65 -----
    |┃三 ./  ≧ \   
    |┃   |::::  \ ./ | 
    |┃ ≡|::::: (● (● |  不等式と聞ゐちゃぁ
____.|ミ\_ヽ::::... .ワ......ノ     黙っちゃゐられねゑ…
    |┃=__    \           ハァハァ
    |┃ ≡ )  人 \ ガラッ

【まとめWiki】 http://wiki.livedoor.jp/loveinequality/

【過去スレ】
・不等式スレッド (第1章) http://science3.2ch.net/test/read.cgi/math/1072510082/
・不等式への招待 第2章 http://science6.2ch.net/test/read.cgi/math/1105911616/
・不等式への招待 第3章 http://science6.2ch.net/test/read.cgi/math/1179000000/
・不等式への招待 第4章 http://science6.2ch.net/test/read.cgi/math/1245060000/
・不等式への招待 第5章 http://uni.2ch.net/test/read.cgi/math/1287932216/
・不等式への招待 第6章 http://uni.2ch.net/test/read.cgi/math/1332950303/
・不等式への招待 第7章 http://rio2016.2ch.net/test/read.cgi/math/1362834879/
・不等式への招待 第8章 http://rio2016.2ch.net/test/read.cgi/math/1498378859/
・不等式への招待 第9章 https://rio2016.5ch.net/test/read.cgi/math/1505269203/
・過去スレのミラー置き場 http://cid-d357afbb34f5b26f.skydrive.live.com/browse.aspx/.Public/

【姉妹サイト】
キャスフィ 高校数学板 不等式スレ  http://www.casphy.com/bbs/test/read.cgi/highmath/1169210077/
キャスフィ 高校数学板 不等式スレ2 http://www.casphy.com/bbs/test/read.cgi/highmath/1359202700/

【wikiなど】
Inequality (mathematics)
https://en.wikipedia.org/wiki/Inequality_(mathematics)
List of inequalities
https://en.wikipedia.org/wiki/List_of_inequalities
List of triangle inequalities
https://en.wikipedia.org/wiki/List_of_triangle_inequalities
Wolfram MathWorld
http://mathworld.wolfram.com/topics/Inequalities.html

614 :132人目の素数さん:2021/03/11(木) 06:14:13.22 ID:JY2ui+vd.net
帰納法
 2^n = 2^{n-1} + 2^{n-1} > (n-1) + 1 = n,
あるいは
 2^n = 2^{n-1} + 2^{n-2} + ・・・・ + 2 + 1 + 1 ≧ n + 1,
           (n+1)項

a_1, a_2, ・・・・, a_n ≧ 0 のとき
(1+a_1)(1+a_2)・・・・(1+a_n) = 1 + s_1 + ・・・・ + s_n ≧ 1 + s_1,
  s_k は k次の基本対称式
  s_1 = a_1 + a_2 + ・・・・ + a_n,
より
 2^n ≧ 1 + n

615 :132人目の素数さん:2021/03/11(木) 12:04:01.19 ID:qBeEcW7U.net
俺が考えていた証明

n(1/n-1/2^n)=1-n/2^n
=(Σ1/2^i)-n/2^n
>(Σ1/2^i)-(1/2+…+1/2^n)>0
よりn>0だから
1/n-1/2^n>0⇔n<2^n

616 :132人目の素数さん:2021/03/15(月) 02:13:29.47 ID:M36DVxm1.net
不等式ってこういう気まぐれ?なときもあるんだね。。
https://ja.wikipedia.org/wiki/%E3%82%B7%E3%83%A3%E3%83%94%E3%83%AD%E3%81%AE%E4%B8%8D%E7%AD%89%E5%BC%8F

617 :132人目の素数さん:2021/03/15(月) 22:30:10.49 ID:on5dd3Wr.net
>>616
n=3のときの、ネビットの不等式に (;゚∀゚)=3ハァハァ した若い頃が懐かしい…

618 :132人目の素数さん:2021/03/17(水) 08:27:58.15 ID:Rkkg81B/.net
>>612
a+b+c = 1 より
 G = (abc)^{1/3} ≦ 1/3,     (AM-GM)

 1/y - y = (1+y)・(1/y - 1),
より
(1/a - 1)(1/b - 1)(1/c - 1) = (1-a -b -c)/(abc) + (1/a + 1/b + 1/c) - 1
 = 1/a + 1/b + 1/c - 1
 ≧ 3/G - 1
 ≧ 2(1/G + 1)   (G≦1/3)
 = 2(1/3G + 1/3G + 1/3G + 1)
 ≧ (2/(3G)^{1/4})^3,

(1+a)(1+b)(1+c) ≧ (1+G)^3  (コーシー)
 = (1/27)(3G+1+1+1)(1+3G+1+1)(1+1+3G+1)
 ≧ ((4/3)(3G)^{1/4})^3,

辺々掛けて (左辺) ≧ (8/3)^3.

619 :132人目の素数さん:2021/03/17(水) 08:34:06.62 ID:Rkkg81B/.net
〔問題3204〕
a≧b≧c≧d≧0 のとき
 (a+2b) (aa+bb) ≦ (a+b)^3
 (a+2b+3c) (aa+bb+cc) ≦ (a+b+c)^3,
 (a+2b+3c+4d) (aa+bb+cc+dd) ≦ (a+b+c+d)^3,

注) 5文字の場合は aa(b-d-2e) が出て来ます…orz

すうじあむ
 http://suseum.jp/gq/question/3204

620 :132人目の素数さん:2021/03/18(木) 01:32:04.79 ID:iElyCuOB.net
>>616
こういうのもなんか理由があるっぽい

621 :132人目の素数さん:2021/04/08(木) 19:31:57.99 ID:jAHOCp/v.net
〔例2.4.6〕
三角形の辺の長さを a,b,c, 面積を凾ニすると
  ≦ (3/4)abc/√(aa+bb+cc),

佐藤(訳), 文献9, 朝倉書店 (2013)  p.89

622 :132人目の素数さん:2021/04/08(木) 20:11:29.99 ID:jAHOCp/v.net
(略証)
  = (1/4)√{4(aabb+bbcc+ccaa) - (aa+bb+cc)^2}  (Heron)
  = (1/4)√{4(xy+yz+zx) - (x+y+z)^2}
  ≦ (1/4)√{9xyz/(x+y+z)}      (Schur-1)
  = (3/4)abc/√(aa+bb+cc),

* Schur-1
 F_1(x,y,z) = (x+y+z)^3 - 4(x+y+z)(xy+yz+zx) + 9xyz
  = x(x-y)(x-z) + y(y-z)(y-x) + z(z-x)(z-y) ≧ 0,

623 :132人目の素数さん:2021/04/24(土) 23:51:27.16 ID:nN6RssoR.net
Twitterで拾った問題

https://i.imgur.com/UT7t9WF.jpg

624 :132人目の素数さん:2021/04/25(日) 04:42:31.91 ID:We8cr6tt.net
〔問題〕
正の実数 a,b,c について、次が成り立つことを示せ。
 {aa(b+c)+4}/(a+2)^3 + {bb(c+a)+4}/(b+2)^3 + {cc(a+b)+4}/(c+2)^3 ≧ 2/3.
等号成立は (a,b,c) = (1,1,1) のとき

625 :132人目の素数さん:2021/04/25(日) 05:46:51.43 ID:We8cr6tt.net
(略証)
{aa(b+c) + 2 + 2} / (a+1+1)^3
 ≧ 1/ {(1+1+1)[a/(b+c) + 1/2 + 1/2)]}  (← コーシー)
 = (b+c) / {3(a+b+c)},
巡回的にたす。

626 :132人目の素数さん:2021/04/25(日) 10:47:03.87 ID:2luW0iZY.net
Twitterから拾った問題

https://i.imgur.com/MTQJIvZ.jpg

627 :132人目の素数さん:2021/04/25(日) 11:03:19.13 ID:YeL676w3.net
>>625
作問者の天真(Twitter:@bon_miss_tenma)です
こんなにあっさり解かれるとは思ってませんでしたw
ついでに620さんの問題も僕のだったりします、是非挑戦してください!

628 :132人目の素数さん:2021/04/25(日) 19:29:46.14 ID:We8cr6tt.net
〔問題620〕
正の実数 a,b,c が aa+bb+cc=3 を満たすとき、次を示せ。
 (2a+1)/(b+c+1)^3 + (2b+1)/(c+a+1)^3 + (2c+1)/(a+b+1)^3 ≧ 1/3,
等号成立は (a,b,c)=(1,1,1) のとき。

(略解)
 (左辺) ≧ (b+c+1)/(b+c+1)^3 + (c+a+1)/(c+a+1)^3 + (a+b+1)/(a+b+1)^3
  = 1/(b+c+1)^2 + 1/(c+a+1)^2 + 1/(a+b+1)^2  (← チェビシェフ)
  ≧ 9/{(b+c+1)^2 + (c+a+1)^2 + (a+b+1)^2}  (← AM-HM / コーシー)
  ≧ 3/{(bb+cc+1) + (cc+aa+1) + (aa+b+1)}
  = 3/{2(aa+bb+cc)+3}
  = 1/3,      (← 題意)

629 :132人目の素数さん:2021/04/26(月) 02:25:57.94 ID:y9M7sTQu.net
(補足)
チェビシェフで
(a+1/2)/(b+c+1)^3 + (b+1/2)/(c+a+1)^3 - (a+1/2)/(c+a+1)^3 - (b+1/2)/(b+c+1)^3
 = (a-b) {1/(b+c+1)^3 - 1/(c+a+1)^3}
 ≧ 0,
循環的にたすと
 (左辺) - 1/(b+c+1)^2 - 1/(c+a+1)^2 - 1/(a+b+1)^2 ≧ 0,

630 :132人目の素数さん:2021/04/28(水) 04:23:14.87 ID:B9p/ERZg.net
>>624
>>626

〔問題34〕
a,b,c > 0 のとき
 (a(b+c)+1)/(b+c+1)^2 + (b(c+a)+1)/(c+a+1)^2 + (c(a+b)+1)/(a+b+1)^2 ≧ 1,
 Inequalitybot [34] ☆5
 JMO-2010 問4

Inequalitybot も問題番号で検索できるようになってます。

631 :132人目の素数さん:2021/04/28(水) 07:27:45.63 ID:B9p/ERZg.net
>>589
〔問題48〕
a,b,c >0 のとき
 (a^5-a^2+3)(b^5-b^2+3)(c^5-c^2+3) ≧ (a+b+c)^3

 USAMO-2004, Q5
 Inequalitybot [48] ☆6

632 :132人目の素数さん:2021/04/28(水) 16:58:32.60 ID:B9p/ERZg.net
>>619
 (a+b)^3 - (a+2b)(aa+bb) = aab + (2a-b)bb ≧ 0,
 (a+b+c)^3 - (a+2b+3c)(aa+bb+cc) = aab + (2a-b)bb + (2a+b-2c)cc + 6abc ≧ 0,
 (a+b+c+d)^3 - (a+2b+3c+4d)(aa+bb+cc+dd)
= aa(b-d) + (2a-b-d)bb + (2a+b-2c-d)cc + (2a+b-3d)dd + 6(abc+abd+acd+bcd) ≧ 0,

633 :132人目の素数さん:2021/04/28(水) 17:05:44.79 ID:B9p/ERZg.net
これと以下を組み合わせた問題があった。
〔補題〕
a+b+c+… = 1 のとき
  (a^a)(b^b)… ≦ (aa+bb+…),
(略証)
a+b+c+… = s とおく。
y=log(x) は上に凸だから Jensen で
 a・log(a) + b・log(b) + ・・・・ ≦ s・log((aa+bb+・・・・)/s)
 (a^a)(b^b)… ≦ {(aa+bb+…)/s}^s,
s=1 とおく。

634 :132人目の素数さん:2021/04/28(水) 19:31:51.11 ID:B9p/ERZg.net
〔問題〕
 tan(1/2) > cos(1).
これの証明はどうすれば出来ますか?

 高校数学の質問スレ411- 028, 936

635 :132人目の素数さん:2021/04/28(水) 23:28:33.43 ID:Tu1Xrn91.net
t = tan(1/2)とおいて
tan(1/2)-cos(t)=(t^3+t^2+t-1)/(t^2+1)
なのでコレが+を言えば良い
tan(1/2)=0.546302.....
t^3+t^2+t-1は単調増大で0になるのはt=0.543689....
とりあえず5次までマクローリン展開して
tan(1/2)
>1/2+(1/3)(1/2)^3+(2/15)/(1/2)^5=131/240=0.54583333......

636 :132人目の素数さん:2021/04/29(木) 02:03:41.02 ID:mxa1BnUU.net
>>634
θ = 1/2 とおいて
tanθ - cos(2θ) = tanθ - 1 + 2(sinθ)^2
 = tanθ - 3/2 + {1/2 + 2(sinθ)^2}
 ≧ tanθ - 3/2 + 2sinθ  (AM-GM)
 = tanθ + 2sinθ - 3θ
 ≧ 0,   (Snellius-Huygensの式)

637 :132人目の素数さん:2021/04/29(木) 02:45:36.56 ID:NbeeKPJA.net
このスネル・ホイヘンスの不等式、以前からどうやって見つけたのか気になってるヤツだ

638 :132人目の素数さん:2021/04/30(金) 23:51:02.05 ID:nccWEVYf.net
>>636
上手だなあ

639 :132人目の素数さん:2021/05/01(土) 14:45:07.43 ID:kM6Q2nUa.net
数学コンテストの問題から二つの不等式問題を拾ってみた

数オリ中国代表選抜の問題
https://i.imgur.com/fDeESFB.jpg

数オリ米国代表選抜の問題
https://i.imgur.com/t1tus8h.jpg

640 :132人目の素数さん:2021/05/01(土) 15:17:41.91 ID:34KV0J3x.net
>>639
さいきん、関数不等式に(;゚∀゚)=3ハァハァでござる

641 :132人目の素数さん:2021/05/04(火) 23:49:09.08 ID:+H9X9UVo.net
a,b,c > 0 に対して、
(a+b+c)^3 ≧ 27abc{(aa+bb+cc)/(ab+bc+ca)}^(25/27)

642 :132人目の素数さん:2021/05/05(水) 05:39:50.22 ID:16g2LNeV.net
〔簡易版〕
a,b,c>0 に対して
 (a+b+c)^3 ≧ 27abc{(aa+bb+cc)/(ab+bc+ca)}^(2/3).

(略証)
(a+b+c)^6 = {(aa+bb+cc) + (ab+bc+ca) + (ab+bc+ca)}^3
  ≧ 27(aa+bb+cc)(ab+bc+ca)^2,    (AM-GM)
2/3 乗して
(a+b+c)^4 ≧ 9(ab+bc+ca)^2 {(aa+bb+cc)/(ab+bc+ca)}^(2/3)
  ≧ 27(a+b+c)abc {(aa+bb+cc)/(ab+bc+ca)}^(2/3),

元の問題は解けぬwww

643 :132人目の素数さん:2021/05/05(水) 05:41:42.08 ID:16g2LNeV.net
〔問題3.85〕
実数a,b,cに対して
 (aa+2)(bb+2)(cc+2) ≧ 3(a+b+c)^2,

 APMO-2004 A5.改
 文献[9] 佐藤(訳)、朝倉書店 (2013) 問題3.85 p.140
 Inequalitybot [20] ☆8
 [高校数学の質問スレ412−029,036,040]

644 :132人目の素数さん:2021/05/05(水) 05:49:27.56 ID:16g2LNeV.net
(解1)
(aa+2)(bb+2)(cc+2) - 3(a+b+c)^2
 = (1/3){(aa+5)(bc-1)^2 + (bb+5)(ca-1)^2 + (cc+5)(ab-1)^2
  + (ab+bc+ca-3)^2 + (a-b)^2 + (b-c)^2 + (c-a)^2}
 ≧0

(解2)
 (aa+2)(bb+2)(cc+2) - 3(a+b+c)^2
 = aa + bb + cc + 2abc + 1 - 2(ab+bc+ca)
 + (abc-1)^2
 + 2(ab-1)^2 + 2(bc-1)^2 + 2(ca-1)^2,

 文献[9] の演習問題1.90 (ii) p.41-42 に帰着する。
〔問題1.90〕(ii)
a,b,c を非負実数とする。このとき
 aa + bb + cc + 2abc + 1 ≧ 2(ab+bc+ca),

645 :132人目の素数さん:2021/05/05(水) 13:18:52.39 ID:+30DA6pc.net
>>641-642
ネットで拾ったんだけど、答えがないな
https://mathifc.wordpress.com/2012/09/20/inequality-106/

646 :132人目の素数さん:2021/05/06(木) 05:59:11.34 ID:Vi6k/Ft1.net
>>644
〔例題2.1.11〕
(7) a,b,c が非負実数のとき
 aa + bb + cc + 2abc + 1 ≧ 2(ab+bc+ca),


文献[8] 安藤, 数学書房 (2012) p.36

647 :132人目の素数さん:2021/05/30(日) 05:50:26.45 ID:EIfW8DuI.net
>608
{x+y, y+z, z+x} のうち1以上のものが

・2個以上のときは 明らか。
・1個以下のときは 1 > y+z, z+x より 0 < x, y, z < 1  >>610

648 :132人目の素数さん:2021/05/30(日) 06:56:34.75 ID:EIfW8DuI.net
>>637
マクローリン展開
 sinθ = θ - (1/3!)θ^3 + (1/5!)θ^5 - (1/7!)θ^7 + (1/9!)θ^9 - …
 tanθ = θ + (1/3)θ^3 + (2/15)θ^5 + (17/315)θ^7 + (62/2835)θ^9 + …
から思い付いたのかも。

>>102 にもあるよ。
 H = θ - (1/180)θ^5 - (1/1512)θ^7 - (1/25920)θ^9 - …
 G = θ + (1/45)θ^5 + (4/567)θ^7 + (1/405)θ^9 + …
 A = θ + (1/20)θ^5 + (1/56)θ^7 + (7/960)θ^9 + …
 A + H - 2G = (1/324)θ^7 + (1/432)θ^9 - …
 AH/GG = (2cosθ+1)/{(2+cosθ)(cosθ)^(1/3)}
    = 1 + (1/324)θ^6 + (1/648)θ^8 + …

649 :132人目の素数さん:2021/05/30(日) 08:38:14.15 ID:EIfW8DuI.net
ついでに…
s>0, t>0 とし
 A = (s+s+t)/3,
 G = (sst)^(1/3)
 H = 3st/(s+t+t),
とおくと
 H < G < A,
 AH > GG,   (0<s<t)
 A+H > 2G,   (0<s<t)
(略証)
 AH = (s+s+t)st/(s+t+t),
 G^3 = sst,
より
 (AH)^3 - G^6 = tt {t(s+s+t)^3 - s(s+t+t)^3}{s/(s+t+t)}^3
  = tt(s+t){(t-s)s/(s+t+t)}^3 > 0,
∴ AH > GG,

 (A+H)/2 = (ss+7st+tt)/[3(s+t+t)],
 G^3 = sst,
より
 {(A+H)/2}^3 - G^3 = {(t-s)^3 + 27stt}{(t-s)/[3(s+t+t)]}^3 > 0,
∴ A+H > 2G,

650 :132人目の素数さん:2021/05/30(日) 18:54:47.33 ID:SMLQU2Ye.net
>>648
テイラー展開は、あまり時代に合わんような気もする。まあ古くから、特殊な場合だけや結果だけ知られているということがよくあるのと、詳しくないので結論付けられない。

ホイヘンスによる証明があったわ。
円の大きさの発見 : 1654年ホイヘンスによる円周率の計算
https://www2.tsuda.ac.jp/suukeiken/math/suugakushi/sympo27/27_tanuma.pdf
(近似)式自体は、15世紀のニコラウス・クザーヌスまで遡れるらしい。

グレゴリーやニュートンが17世紀後半にべき級数展開したらしいから、ホイヘンスは知らないような気もする。代数計算得意じゃないとキツイし。

651 :132人目の素数さん:2021/06/06(日) 02:15:52.79 ID:Q09kUO/y.net
1992年IMO5番
https://i.imgur.com/NvlwAw4.png

652 :132人目の素数さん:2021/06/08(火) 05:51:17.44 ID:Hilnv+E/.net
5.Sは3次元座標空間の有限個の点の集合である。
S_x, S_y, S_z はそれぞれ、Sの点の yz-平面, zx-平面, xy-平面への正射影からなる点の集合である。
次を証明せよ。
  | S |^2 ≦ |S_x|・|S_y|・|S_z|
ここに | A | は有限集合Aの要素の個数である。

653 :132人目の素数さん:2021/06/08(火) 05:57:08.83 ID:Hilnv+E/.net
>>284

f(x)は下に凸な関数とする。自然数nに対して不等式
 nΣ[k=0,n] f(2k) > (n+1)Σ[k=1,n] f(2k-1)
を示せ。

[面白スレ36.256-260]

654 :132人目の素数さん:2021/06/08(火) 20:03:58.37 ID:Hilnv+E/.net
>>651 >>652
z値の集合を {z1, …, zi, …, zn} とする。
S, Sy, Sx の点を z値で分類する。
S, Sy, Sx の点のうち z=zi をみたすものの個数を |Li|, ai, bi とする。

(1) |Li| ≦ ai・bi,

(2) |S| = |L1| + … + |Li| + … + |Ln|,

(3) |Sy| = a1 + … + ai + … + an,
  |Sx| = b1 + … + bi + … + bn,

(4) |Li| ≦ |Sz|,

(1) と (4) を掛けて
 |Li|^2 ≦ (ai・bi) |Sz|,
 |Li| ≦ √(ai・bi) √|Sz|,    ・・・・ (5)

(2), (5) より
|S|^2 ≦ {√(a1・b1) + … + √(ai・bi) + … + √(an・bn)}^2・|Sz|
  ≦ (a1 + … + ai + … + an)(b1 + … + bi + … + bn)|Sz|   コーシー
  = |Sy| |Sx| |Sz|,

http://www.youtube.com/watch?v=IzitrvYnNkc 11:08,

655 :132人目の素数さん:2021/06/12(土) 15:46:26.57 ID:rM3zqrZ1.net
1993年日本数学オリンピック本選5番

https://i.imgur.com/kwA3sGg.png

656 :132人目の素数さん:2021/06/14(月) 16:23:08.26 ID:lFKMSNRU.net
0<k≦3, a,b,c>0のとき
3-k+k(abc)^(2/k)+a^2+b^2+c^2≧2(ab+bc+ca)
を示せ

657 :132人目の素数さん:2021/06/15(火) 01:00:18.66 ID:78D2HNY3.net
>>646
>>656
似た問題くれ

658 :132人目の素数さん:2021/06/15(火) 20:42:53.54 ID:iDQ7MEu/.net
>>656
0<k≦3 ゆえ x^(3/k) は下に凸。 x=1 で接線を曳いて、
 (3-k) + k・x^(3/k) ≧ 3x,
(左辺) - (右辺) ≧ aa+bb+cc - 2(ab+bc+ca) + 3(abc)^(2/3)
 ≧ aa+bb+cc - 2(ab+bc+ca) + 9abc/(a+b+c)    (AM-GM)
 = F1(a,b,c)/(a+b+c)
 ≧ 0,

*) Schurの不等式
F1(a,b,c) = a(a-b)(a-c) + b(b-c)(b-a) + c(c-a)(c-b)
 = (a+b+c)^3 - 4(a+b+c)(ab+bc+ca) + 9abc ≧ 0.

659 :132人目の素数さん:2021/06/17(木) 14:58:41.31 ID:NM0vuEzL.net
>>658
3/kではなくて2/kだぞ

660 :132人目の素数さん:2021/06/17(木) 20:08:44.51 ID:lnjH0V31.net
x = (abc)^(2/3)

661 :132人目の素数さん:2021/07/24(土) 10:02:29.51 ID:olJMYtps.net
IMO2021の2番に不等式問題出たな

https://i.imgur.com/3822PyY.png

662 :132人目の素数さん:2021/07/24(土) 12:58:46.19 ID:iF34JJ+s.net
>>661
ウホッ、いい不等式!

663 :132人目の素数さん:2021/07/24(土) 13:52:58.43 ID:iF34JJ+s.net
a,b,c > 0、ab+bc+ca+abc=4 のとき、a+b+c ≧ ab+bc+ca.
ベトナム1996らしい

664 :132人目の素数さん:2021/07/25(日) 04:46:50.40 ID:0rv1EuHc.net
(略解)
 t = ab+bc+ca < 3,
と仮定すると
 u = abc < 1,   (AM-GM)
となり題意に反する。
∴ 3 ≦ t < 4,
∴ s = a+b+c ≧ tt/3 ≧ 3,

(s-t)(ss+st+tt - 4t)
 = (4-t)(t-3)(t+3) + (s^3-4st+9u)
 = (4-t)(t-3)(t+3) + F1(a,b,c)
 ≧ 0,   (← Schur-1)
∴ s-t ≧ 0,
 [面白スレ37.704] にもあった。

665 :132人目の素数さん:2021/07/25(日) 04:52:39.17 ID:0rv1EuHc.net
訂正スマソ
 s = a+b+c ≧ √(3t) ≧ 3,   (AM-GM)

666 :132人目の素数さん:2021/07/25(日) 05:08:13.86 ID:0rv1EuHc.net
〔類題184〕
a,b,c>0, a+b+c+abc=4 のとき a+b+c≧ab+bc+ca,

大数宿題 2010-Q7
[不等式スレ7.114-115,160]
Inequalitybot [184] ☆7

667 :132人目の素数さん:2021/07/25(日) 05:12:18.46 ID:0rv1EuHc.net
(略解)
s = a+b+c < 3 と仮定すると
 u = abc < 1   (AM-GM)
となり題意に反する。
∴ 3 ≦ s < 4.

4s(s-t) = (4-s)(s-3)(s+3) + 9(4-s-u) + (s^3 -4st +9u)
  = (4-s)(s-3)(s+3) + 9(4-s-u) + F1(a,b,c)
  ≧0,     (← Schur-1)
∴ s-t ≧ 0.

668 :132人目の素数さん:2021/07/25(日) 06:48:26.36 ID:0rv1EuHc.net
>>661
〔問題2.〕
 任意の実数 x1, x2, ・・・・, xn に対して、不等式
     Σ[i=1,n] Σ[j=1,n] √|xi-xj| ≦ Σ[i=1,n] Σ[j=1,n] √|xi+xj|,
が成り立つことを示せ。

669 :132人目の素数さん:2021/07/25(日) 11:16:51.60 ID:236oCq6r.net
実質極値がa=b=cの時でしかもそれが未定定数法で簡単に求まるやつはなんかもひとつやな

670 :132人目の素数さん:2021/07/25(日) 18:35:50.30 ID:0rv1EuHc.net
>>664
 s≧3 どこにも使ってないの、なんかもひとつやな

671 :132人目の素数さん:2021/07/27(火) 19:25:05 ID:gRrHTwn5.net
>>661
こんな良い不等式がまだ残ってるとは

これルートなくても成り立ちそうだけど、その場合は簡単に示せたりする?

672 :132人目の素数さん:2021/07/29(木) 01:08:01 ID:gaBM8HMZ.net
複素数 z (0≦arg(z) < 2π) に対して、
   |z-1| < |z| - 1 + |z|*arg(z).
( ゚∀゚) ウヒョッ!

673 :132人目の素数さん:2021/07/29(木) 01:09:26 ID:gaBM8HMZ.net
>>672
条件に |z|>1 を追加。

674 :132人目の素数さん:2021/07/29(木) 21:13:16 ID:a7gJLkin.net
a_1≧a_2≧…≧a_n>0かつa_1+a_2+…+a_n=1のとき
a_1+2a_2+…na_nのとりうる値の範囲を求めよ.

675 :132人目の素数さん:2021/07/30(金) 06:22:01 ID:oWjQc2j0.net
f(a) = Σ[k=1,n] k・a_k とおく。
f(1, 0, …, 0) = 1 (最小)
f(1/n, 1/n, …, 1/n) = (n+1)/2 (最大)

(略証)
f(a) - 1 = (a_1+a_2+…+a_n - 1) + Σ[k=2,n] (k-1) a_k ≧ 0,
(n+1)/2 - f(a) = Σ[k=1,n] ((n+1)/2 - k) a_k
   = Σ[k'=1,n] (k' - (n+1)/2) a_{n+1-k'}
   = (1/2)Σ[k=1,n] ((n+1)/2-k) (a_k - a_{n+1-k})  (←同符号)
   ≧ 0,

676 :132人目の素数さん:2021/07/30(金) 06:46:40 ID:oWjQc2j0.net
>>672
?不等式より
 |z - 1| ≦ ||z| - 1| + |z - |z|| < ||z| - 1| + |z|・arg(z),

677 :132人目の素数さん:2021/07/30(金) 14:02:27 ID:oWjQc2j0.net
>>675
(n+1)/2 - f(a) = ((n+1)/2) (1 - a_1 - a_2 - … - a_n)
      + (1/2) Σ[k=1,n-1] k(n-k) (a_k - a_{k+1})
     ≧ 0,
の方がいいか…

678 :132人目の素数さん:2021/07/31(土) 10:02:06 ID:aE5MLnpD.net
有名不等式が大量に載ってるpdfを発見したので載せてみる
http://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf

あと2020年度imoショートリストから

https://i.imgur.com/ju1Dyee.png

679 :132人目の素数さん:2021/08/17(火) 13:07:12 ID:3+UNf6gr.net
>>678
グッジョブ
分割して日替わり壁紙にしよう

680 :132人目の素数さん:2021/08/26(木) 20:07:00 ID:hGc0TLQT.net
eと(1+1/n)^nが登場する不等式をたくさんください

681 :132人目の素数さん:2021/09/04(土) 18:23:48 ID:KMsJe/e+.net
a, b, c が0以上かつ a^2 + b^2 + c^2 = 1 を満たすとき,
(a+bーc)^n + (b+c-a)^n + (c+a-b)^n (n は3以上の整数) 
の最大値と最小値を求めよ.

682 :132人目の素数さん:2021/09/04(土) 21:02:15 ID:HGuBdRDo.net
最大値 2^{n/2}
  a = 0, b = c = 1/√2 など。 (x=√2, y=z=0, etc.)
最小値 (1/3)^{n/2 - 1}
  a = b = c = 1/√3,  (x=y=z=1/√3)

x = b+c-a, y = c+a-b, z = a+b-c とおくと
1 = aa + bb + cc
 = {(x+y)^2 + (y+z)^2 + (z+x)^2}/4
 = {(x+y+z)/√3}^2 + (1/4){(x-y)/√2}^2 + (1/4){(x+y-2z)/√6}^2,
回転楕円体 (どら焼き形)
 短軸:1  (1,1,1)方向  
 長軸:2  それと垂直方向

683 :132人目の素数さん:2021/09/04(土) 23:49:24 ID:KMsJe/e+.net
>> 676

もう少し具体的に

684 :132人目の素数さん:2021/09/05(日) 02:00:08 ID:HFxHmzMl.net
a=u^2,b=v^2,c=w^2
束縛
C = u^4+v^4+w^4-1
評価関数
S = (v^2+w^2-u^2)^n+(w^2+u^2-v^2)^n+(u^2+v^2-w^2)^n

s = 2n((v^2+w^2-u^2)^(n-1)+(w^2+u^2-v^2)^(n-1)+(u^2+v^2-w^2)^(n-1))とおいて
dC=4(u^3,v^3,w^3)
dS=s(u,v,w)
s≠0により
dSがdCで張られる
⇔vw(v^2-w^2)=wu(w^2u^2)=uv(u^2-v^2)=0
⇔u^2=v^2=w^2 or u^2=v^2 & w=0 or u=v=0 or...

685 :132人目の素数さん:2021/09/05(日) 06:18:37 ID:Zhg5gGCb.net
専門的過ぎてついていけない
数オリの高校生の理解できる解法でお願いします

686 :132人目の素数さん:2021/09/05(日) 10:01:38 ID:HFxHmzMl.net
数学の問題は進んだテクニック使っても全然簡単にならず、実は中学生でも理解できるような話の方が楽に解ける時がある
数オリとかの問題とかそういう問題のオンパレードだし、ピーターフランクルとかそんな問題大好きの人もいっぱいいる
しかしそれは進んだ数学を勉強しないでいい理由になどにはならないし、ましてや逆に言えば、進んだテクニック使えば楽に解ける問題をいつまでもいつまでもそういう”初頭数学縛り”をかけて解くのは単なる“自己満”でしか無い
不等式の話を本当に極めるなら未定乗数法は絶対避けては通れない

687 :132人目の素数さん:2021/09/05(日) 12:53:40 ID:LDbpAA38.net
grad(f(u,v,w)) = ∇f = (∂f/∂u, ∂f/∂v, ∂f/∂w)
s1 = 2n{-(v^2+w^2-u^2)^(n-1) + (w^2+u^2-v^2)^(n-1) + (u^2+v^2-w^2)^(n-1)},
s2 = 2n{(v^2+w^2-u^2)^(n-1) - (w^2+u^2-v^2)^(n-1) + (u^2+v^2-w^2)^(n-1)},
s3 = 2n{(v^2+w^2-u^2)^(n-1) + (w^2+u^2-v^2)^(n-1) - (u^2+v^2-w^2)^(n-1)},
とおくと
 grad(C) = ∇C = 4(u^3, v^3, w^3)
 grad(S) = ∇S = (s1・u, s2・v, s3・w)
       = s(u, v, w)
ここから ついていけない…

688 :132人目の素数さん:2021/09/06(月) 18:13:36 ID:eC9BaMcK.net
問題[2]
 a_n = (1 + 1/n)^n, b_n = (1 + 1/n)^(n+1)  (nは正の整数)
とおくとき、nが増加するとa_nは増加し、b_nは減少することを証明せよ。
 (数学検定 2011年秋, 1級 2次 問題[2] の一部)
* 作問者は AM-GM を活用する解答を期待していたが…

〔補題258〕               >>262
 (1) (1 + 1/n)^(n+1/2) は単調減少でeに収束
 (2) n! < n^(n+1/2) / e^(n-1),
 (3) (2n)! / n! < (√2)(4n/e)^n,

>>267
Σ[k=1,n] (1/((k+1)(k!)^2))^(1/k) ≒ 1.99877613 - ee/n + 64.5/nn - …

689 :132人目の素数さん:2021/09/15(水) 06:12:14 ID:UyKWpegQ.net
>>680
〔モローの不等式〕
 {2n/(2n+1)}e < (1+1/n)^n < {(2n+1)/(2n+2)}e,

左側は 補題(1) より
 {2n/(2n+1)}e < 1/√(1+1/n)・e < (1+1/n)^n

http://www.youtube.com/watch?v=FDTaIYjWR2E 20:24,
数セミ増刊「数の世界」日本評論社 (1982) p.82

690 :132人目の素数さん:2021/09/15(水) 15:24:37 ID:+P/8oXVv.net
x_1,x_2,...,x_n>0, Πx_k=1のとき次を示せ
Σ1/(n-1+x_k)≦1

691 :132人目の素数さん:2021/09/15(水) 17:00:11 ID:cOPYG12B.net
f(t)=1/(n+e^t)、F(t1,‥) = Σf(ti)とおく
f(t)はt≧lognで下に凸かつt≦lognで上に凸
全てtiがlognより小さい領域ではti=0のときFは最大値1
そうでない領域でΣti=0かつF(ti)>1が存在すれば
t1 =(n-1)c, ti=-c (i≧2,t1>logn)
であるtiで存在する
e^t=uとおいて
F(ti)-1
= 1/(n-1+u^(n-1) + (n-1)/(n-1+1/u)-1
= 1/(n-1+u^(n-1) - 1/((n-1)u+1)
しかしu≧1において
n-1+u^(n-1)≧(n-1)u+1
であるから矛盾

692 :132人目の素数さん:2021/09/16(木) 05:07:13 ID:Sn49tAbo.net
背理法で…
不等式が成り立たないとする。すなわち、
 Σ[k=1,n] 1/(n-1+x_k) >1,
であると仮定する。このとき
1/(n-1+x_i) > 1 - Σ[k≠i] 1/(n-1+x_k)
 = (1/(n-1))Σ[k≠i] x_k /(n-1+x_k)
 ≧ ( Π[k≠i] x_k /(n-1+x_k) )^{1/(n-1)}, (AM-GM)
となる。i=1,…,n で掛けて
 Π[i=1,n] 1/(n-1+x_i) > Π[k=1,n] x_k /(n-1+x_k),
となるが、これは 1 > Π[k=1,n] x_k を意味するので矛盾である。

ルーマニアMO-1999,
文献[9], 佐藤(訳), 朝倉書店(2013), 問題3.35 p.131
Inequalitybot [109]

693 :132人目の素数さん:2021/09/16(木) 05:13:59 ID:Sn49tAbo.net
〔類題〕
 x_1, x_2, …, x_n >0 が Σ[k=1,n] 1/(n-1+x_k) = 1 を満たすとする。
このとき
   Π[k=1,n] x_k ≧ 1,
を証明せよ。

文献[9], 佐藤(訳), 朝倉書店(2013), 問題1.46改 p.14

694 :132人目の素数さん:2021/09/20(月) 10:34:26 ID:YMP5Sl+4.net
(1)
z,w∈C、|z|=|w|=1 のとき、
|z+1| + |w+1| + |zw+1| ≧ 2

(2)
a,b,c∈C に対して、
|a| + |b| + |c| ≦ |a+b-c| + |b+c-a| + |c+a-b|

( ゚∀゚) ウヒョッ!

695 :132人目の素数さん:2021/09/20(月) 22:52:38 ID:lYkiWXwV.net
(1)は簡単やな
x^をxの複素共役として
|z+1|+|w+1|+|zw+1|
=|z+1|+|w^+1|+|z+w^|
なので|a|+|b|+|c|=1のとき
|b+c|+|c+a|+|a+b|≧2
を示せば良い
b = c exp(2iA), c = exp(2iB), a = exp(2iC), A+B+C=π
となる非負実数A,B,Cがとれるとしてよくこのとき
|b+c|+|c+a|+|a+b|
=2(cosA+cosB+cosC)
であるからcos(x)の凸性により(A,B,C)=(-π,π,π),(π,-π,π),(π,π,-π)のとき最小値2

696 :132人目の素数さん:2021/09/20(月) 23:02:12 ID:lYkiWXwV.net
(2)は力技で
sを複素定数としC^3の領域
R={ .. | a + b + c = 2s }
におけるS=2( |s-a| + |s-b| + |s-c| ) - ( |a| + |b| + | c| )の最小値が0以上であることを示せば良い
それには全微分できない領域で非負、全微分可能な極値で非負を言えば十分
s=0であればS=|a|+|b|+|c|となり自明だからs≠0とする

i) a=0のとき
S=2(|b+c|/2 + |b-c|/2 × 2) - (|b|+|c|)
=|b+c|/2-|b|+|b+c|/2-|c|+|b-c|
≧-|b-c|/2 × 2 + |b-c| = 0

(ii) a=s のとき
このときs=a=b+cより
S=2(|b|+|c|)-(|b+c|+|b|+|c|)
=|b|+|c|-|b+c|≧0

(iii) a=bのとき
このときs=a+c/2より
S=2(|c/2|+|c/2|+|a-c/2|)-(|a|×2+|c/2|)
=|c|+|2a-c|-|2a|≧0

(iv)a,b,cが同一直線上のとき
a,b,cは実数としてよくSをaの関数として見たときlim[a→±∞]S=∞だから極値だけ考えればよく、極値をとるのはa=s,0の場合のみであるから既出の場合に還元される

(v)その他の場合
Sは全微分可能でありz^を複素共役としてe(z)=z/|z|とおけば
dS = -2(e(s-a)^da + e(s-a)da^+ e(s-b)^db +e(s-b)db^+ e(s-c)^dc + e(s-c)dc^)-(e(a)^da+e(a)da^+e(b)^db+e(b)db^+e(c)^dc+e(c)dc^)
でありコレがda+db+dcの複素定数倍であるから
2e(s-a)+e(a)=2e(s-b)+e(b)=2e(s-c)+e(c)=0
である
よってa,b,cが同一直線上となるので既出のケースに還元される

697 :132人目の素数さん:2021/09/21(火) 12:09:47 ID:AENcTZtD.net
>>695
(1)
|a| = |b| = |c| = 1 のとき
 |b+c| + |c+a| + |a+b| ≧ 2,
ですか。

>>696
(2) は簡単やな。Ravi変換で
 b+c-a = p,
 c+a-b = q,
 a+b-c = r,
とおけば
(左辺) = |a| + |b| + |c|
 = |q+r|/2 + |r+p|/2 + |p+q|/2
 ≦ |p| + |q| + |r|.

698 :132人目の素数さん:2021/09/21(火) 12:22:40 ID:IIHpCqtI.net
あれ?
その方法最初に考えてダメと思ったんやけど勘違いしたかな?
まぁ複素係数の微分形式の復習になったからいいけど

699 :132人目の素数さん:2021/09/21(火) 20:58:30 ID:AENcTZtD.net
>>695
 C ≧ π/2 の場合 (鈍角?) は
 |b+c| + |c+a| + |a+b|
 = 2(|cosA| + |cosB| + |cosC|)
 ≧ 2(cosA + cosB)
 ≧ 2(1 + cos(A+B))   (凸性)
 ≧ 2,        (A+B≦π/2)
ですね。あるいは
 cosA + cosB + cosC
 = 1 + 4sin(A/2)sin(B/2)sin(C/2)   (A+B+C=π)
 ≧ 1,

700 :132人目の素数さん:2021/09/22(水) 19:57:40 ID:K2h4cEAP.net
>>694
(1)は簡単やな
 |z+1| + |w^+1| + |z+w^|
 ≧ |(z+1) + (w^+1) - (z+w^)|
 = 2,

 |b+c| + |c+a| + |a+b|
 ≧ |-(b+c) + (c+a) + (a+b)|
 = 2|a|,
同様にして
 |b+c| + |c+a| + |a+b| ≧ 2 Max{|a|,|b|,|c|}

(2)は簡単やな  >>697

701 :132人目の素数さん:2021/09/22(水) 20:21:10 ID:miCnVfcc.net
>>700
なんでそういう書き方するん?
それ読んだ相手がどういう気持ちになるか考えられへんの?

702 :132人目の素数さん:2021/09/24(金) 22:25:33 ID:lJNbXbJw.net
〔問題〕
 Σ[n=2,∞] 1/n^3 < (1+√5)/16 = 0.2022542486

 (阪大-改)

http://www.youtube.com/watch?v=_zGQfWy9j28 22:05
鈴木貫太郎

703 :132人目の素数さん:2021/09/25(土) 11:52:48 ID:S56dxsDJ.net
1/n^3 = n/n^4
 < n/(nn-1/4)^2
 = {(n+1/2)^2 - (n-1/2)^2}/{2(nn-1/4)^2}
 = (1/2){1/(n-1/2)^2 - 1/(n+1/2)^2}
∴ Σ[n=2,∞] 1/n^3 < 2/9 = 0.222222
ぢゃ出ない・・・・orz

704 :132人目の素数さん:2021/09/28(火) 04:04:41 ID:xRhStcay.net
c>0 かつ z,w∈C のとき、
|z+w|^2 ≦ (1+c)|z|^2 + (1 + 1/c)|w|^2.

昔やったかも? ( ゚∀゚)

705 :132人目の素数さん:2021/09/28(火) 12:43:23 ID:ED+tdwHx.net
|z+w|^2 ≦ (|z| + |w|)^2     (三角不等式)
  = |z|^2 + |w|^2 + 2|z||w|
  = |z|^2 + |w|^2 + c|z|^2 + (1/c)|w|^2 - (|z|√c - |w|/√c)^2
  ≦ |z|^2 + |w|^2 + c|z|^2 + (1/c)|w|^2   (GM-AM)
  = (1+c)|z|^2 + (1+1/c)|w|^2.
等号成立は w = cz のとき。

706 :132人目の素数さん:2021/09/28(火) 12:56:38 ID:ED+tdwHx.net
>>702
 φ = (1+√5)/2 = 1.618034… とおく。 (黄金比)
1/n^3 = n/n^4
 ≦ n/{n^4 - (2/φ-1)^2・(nn-4)}    (n≧2)
 = n/{(nn -2 +4/φ)^2 - nn}
 = n/{(nn -n -2 +4/φ)(nn +n -2 +4/φ)}
 = (1/2){1/(nn-n-2 +4/φ) - 1/(nn+n-2 +4/φ)},
∴ Σ[n=2,∞] 1/n^3 < φ/8 = (1+√5)/16,

707 :132人目の素数さん:2021/09/29(水) 05:31:52 ID:lKJ2KBeg.net
>>704
 |z+w|^2 + |z√c - w/√c|^2 = (1+c)|z|^2 + (1+1/c)|w|^2,
だった希ガス。。。

708 :132人目の素数さん:2021/09/29(水) 09:17:12 ID:lKJ2KBeg.net
>>702
1/n^3 = n/n^4
 < n/{n^4 - (√10 -3)^2(nn-9)}    (n≧3)
 = n/{(nn -9 +3√10)^2 - n^2}
 = n/{(nn -n -9 +3√10)(nn +n -9 +3√10)}
 = (1/2){1/(nn -n -9 +3√10) - 1/(nn +n -9 +3√10)},
∴ Σ[n=2,∞] 1/n^3 < 1/8 + (1+√10)/54 = 0.2020792

709 :132人目の素数さん:2021/09/29(水) 10:19:16 ID:mxWzl1I/.net
>>707
( ゚∀゚) キタコレ!

710 :132人目の素数さん:2021/09/29(水) 11:56:39 ID:mxWzl1I/.net
>>694
(2)の等号成立条件はどうなるんでせうか?

711 :132人目の素数さん:2021/09/30(木) 06:51:58 ID:hn+yThHP.net
arg(a) = arg(b) = arg(c) かつ |a|, |b|,| c| が三角不等式を満たす。
ただし arg(0) は任意の値に等しいとする。

∵ arg(p) = arg(q) = arg(r).

712 :132人目の素数さん:2021/09/30(木) 22:46:47 ID:jz/TtT2s.net
Σ(k=1~2n)2nCk×(1/(n-1)^2)^k>2/(n-1)

↑これ成り立ちそうなんだけど証明浮かばん

713 :132人目の素数さん:2021/09/30(木) 23:26:03 ID:yVhW4Ory.net
とりあえずt = 1/(n-1)とおいてt=0の近傍では左辺-右辺は
4 t^2 + (13 t^3)/3 + (11 t^4)/3 + (8 t^5)/5 - (7 t^6)/90 + O(t^7)
(テイラー級数)
だそうな

714 :132人目の素数さん:2021/10/01(金) 06:04:21 ID:y+GdRVMF.net
初項は 2n/(n-1)^2 > 2/(n-1),
あとの項も >0,

なお、二項公式から
 Σ(k=1〜2n) C(2n,k) (t^2)^k = (1+t^2)^{2n} - 1.

総レス数 1007
345 KB
新着レスの表示

掲示板に戻る 全部 前100 次100 最新50
read.cgi ver.24052200