2ちゃんねる ■掲示板に戻る■ 全部 1- 最新50    

■ このスレッドは過去ログ倉庫に格納されています

ガロア第一論文と乗数イデアル他関連資料スレ6

972 :132人目の素数さん:2024/05/13(月) 13:37:46.82 ID:Ug9jJCvB.net
>>952
>>非零因子行列は逆行列が存在し、正則と呼ばれる
>>その常識をさらりと述べた だけなのです
>常識じゃないけど
>行列の成分が体であればその通りだが
>行列の成分が環ならそうならない

以前に 下記 広大 松本眞先生 代数学II:環と加群 を紹介したけど、読んでないの?
ちゃんと読んだら?
"A∈Mn(R)がGLn(R)に入る必要十分条件は、AB=En=BAなるBが存在することになる。
このような行列を可逆行列という。
命題1.4.1. A∈Mn(R)が可逆である必要十分条件は、detA∈Rx (ここでRxはRの乗法についての可逆元のなす群)"
を百回音読願います ;p)

(参考)
http://www.math.sci.hiroshima-u.ac.jp/m-mat/TEACH/kan-kagun7.pdf
代数学II:環と加群(注:5/28版:38ページ以降大幅書き直し予定)松本 眞1 2020 年5 月28 日
1広島大学理学部数学科

第1章環上の加群
1.4単因子論 19

P4
1.1 環上の加群
1.1.1 環、単位環、整域、体
環(R,+,0,x)とは、(R,+,0)が加法群であって、(R,x)が半群であり、左分配法則(a+b)xc=axc+bxc
と右分配法則cx(a+b)=cxa+cxbを満たすもの。
axbをしばしばa・bまたはabと書く。可換環とは、積が可換な環のこと。そうでないものを非可換環という。

単位環(R,+,0,x,1)とは、環であって、(R,x,1)がモノイドであるもの。
零環={0}も単位環である。
特に単位環であることが重要であるとき、つい「単位的環」と書くことがある。
整域とは、可換環であって、R-{0}が積についてモノイド(単位元を持つ半群)となるものを指す。
体とは、さらにR-{0}が群となるものを指す。
従って、零環は整域でも体でもない。
準同型、同型の「型」の字は「形」にはしないほうがいいかも知れないが、字の区別が僕には難しいので混用する。

P19
1.4単因子論
行列について。Rを可換環とする。Mn,m(R)でnxmの成分の行列の集合をあらわす。
成分ごとの和とスカラー倍により、ランクnmの自由加群Rとなる。
n=mのとき、Mn,m(R)をMn(R)で表す。積が入り、単位環となる。
その積に関する(モノイドの)可逆元の集合Mn(R)xは群をなす。
これをGLn(R)で表す。
A∈Mn(R)がGLn(R)に入る必要十分条件は、AB=En=BAなるBが存在することになる。
このような行列を可逆行列という。

命題1.4.1. A∈Mn(R)が可逆である必要十分条件は、detA∈Rx (ここでRxはRの乗法についての可逆元のなす群)。
証明. A˜をAの余因子行列とする。線形代数でならったようにAA˜=det(A)・En=AA˜である。
従って、det(A)がRの可逆元ならば1/det(A) ˜がAの逆元を与える。
逆に、Aが可逆ならばAB=Enのdeterminantをとってdet(A)det(B)=1、すなわちdet(A)∈Rx。

単項イデアル整域をPID*と書く。(注* 英: principal ideal domain; PID 主イデアル整域とも)

つづく

総レス数 1001
709 KB
新着レスの表示

掲示板に戻る 全部 前100 次100 最新50
read.cgi ver.24052200