2ちゃんねる ■掲示板に戻る■ 全部 1- 最新50    

■ このスレッドは過去ログ倉庫に格納されています

ガロア第一論文と乗数イデアル他関連資料スレ6

1 :132人目の素数さん:2024/01/08(月) 09:09:43.45 ID:OXe7qSh4.net
このスレは、ガロア第一論文と乗数イデアル他関連資料スレです
関連は、だいたい何でもありです(現代ガロア理論&乗数イデアル関連他文学論まで)

前スレ
ガロア第一論文と乗数イデアル他関連資料スレ5
https://rio2016.5ch.net/test/read.cgi/math/1687778456/

資料としては、まずはこれ
https://sites.google.com/site/galois1811to1832/
ガロアの第一論文を読む
渡部 一己 著 (2018.1.28)
PDF
https://sites.google.com/site/galois1811to1832/galois-1.pdf?attredirects=0

<乗数イデアル関連>
ガロア第一論文及びその関連の資料スレ
https://rio2016.5ch.net/test/read.cgi/math/1615510393/785 以降ご参照
https://en.wikipedia.org/wiki/Multiplier_ideal Multiplier ideal
https://mathoverflow.net/questions/142937/motivation-for-multiplier-ideal-sheaves motivation for multiplier ideal sheaves asked Sep 23, 2013 Koushik

<層について>
https://ja.wikipedia.org/wiki/%E5%B1%A4_(%E6%95%B0%E5%AD%A6)
層 (数学)
https://en.wikipedia.org/wiki/Sheaf_(mathematics)
Sheaf (mathematics)
https://fr.wikipedia.org/wiki/Faisceau_(math%C3%A9matiques)
Faisceau (mathématiques)

あと、テンプレ順次

つづく

7 :132人目の素数さん:2024/01/08(月) 10:04:52.57 ID:OXe7qSh4.net
>>5 追加

1消滅定理と非消滅定理ってなに?
今ここを読んでいる人は、せめてこの章だけは読んで欲しい。
この章は高次元代数多様体論普及のための解説である。非専門家向けに書いてある。
以下すべて複素数体上で考える。
Xを非特異射影代数多様体とし、DをX上のカルティエ因子とする。典型的な消滅定理は、

代数幾何学を学んだことのある人なら誰でも、リーマン面(もしくは代数曲線)上でリーマン–ロッホの公式をつかって線形系の性質を調べるという話を勉強したことがあると思う。
我々はその話の単純な高次元化を考えていると言っても良いかもしれない。
高次元代数多様体論は敷居の高い分野と思われているようだが、実は約半世紀前の小平の議論と大差のない話を延々とやっているだけかもしれない。
スタックもファンクターも導来圏もあまり目にしない古典的な分野である。
少しでも敷居が低くなったであろうか?大半の人はここまでしか読まないのだろうか?
次の章からは通常の解説記事である。2章から9章までは完全に普通のまじめな報告書である。
最後の10章は私の個人的な考えである。通常の論文などには書かない話である。内容はセミプロ向けかもしれない。10章に面白さを期待してはいけない。

2はじめに
このノートでは、最近得られた対数的標準対に対する非消滅定理を解説する。この非消滅定理は、対数的標準対に対する固定点自由化定理と同値であることが示される。
したがって、結果自体は新しくないと言える。
今回の非消滅定理の一番のポイントは、その定式化である。
数学的な内容は固定点自由化定理と同値であるが、非消滅定理として正しく定式化することにより、極小モデル理論の基本定理たちの証明に劇的な簡略化をもたらしたと主張したい。

3おわび
80年代前半から現在にいたるまで、極小モデル理論研究の最も重要でよく使われるテクニックは川又–Viehweg消滅定理である。80年代後半から、乗数イデアル層の考え方が持ち込まれ、Nadel型の消滅定理をつかうことも非常に有効であることが分かって来た。いずれにせよ、すべて川又–Viehweg消滅定理の応用として扱うことが出来る話である。今回の一連の発展は、その川又–Viehweg消滅定理の部分を一般化し、新しい道具で極小モデル理論を考え直した、ということである。
ここ数年いろいろと迷走してしまったが、[F7]で古典的な川又のX-論法と乗数イデアル層の理論をミックスした新しい極小モデル理論の基礎と基本的なテクニックを提供することで、今後数十年間の極小モデル理論の土台は完成したと思う。一言で言うと、極小モデル理論の基礎部分が純ホッジ構造の話から混合ホッジ構造に移り変わった、である。興味を持たれた読者は、[F3]、[F4]、[F6](いずれも短い)を読むことを勧める。以下の解説を読むより論文を読む方が分かりやすいような気がする。

つづく

8 :132人目の素数さん:2024/01/08(月) 10:05:18.35 ID:OXe7qSh4.net
つづき

4特異点の定義
ここでは特異点の定義について最低限のことだけを述べておく。詳しくは、[K森,§2.3]を見ていただきたい。極小モデル理論の専門家以外には頭の痛くなる話題であろう。

5非消滅定理
以下の定理がこの章の主定理である。対数的標準対に対する非消滅定理である。

7証明のアイデア
ここでは非消滅定理の証明のアイデアについて説明する。

8今後の課題
今回の仕事で、[K森]の2章の後半と3章が完全に一般化されたことになる。
道具である消滅定理が[K森]よりも格段に進歩しているからである。

9勉強の仕方
消滅定理は[F3]がお勧めである。[K森]の消滅定理の証明と全く同じ書き方で書いてある。次に[F6]を読めば極小モデル理論の基本定理(非消滅定理、固定点自由化定理、有理性定理、錐定理)が簡単に学べる。ある意味[K森]の3章より簡単である。消滅定理が強力になったので、川又によるX-論法(広中の特異点解消定理をつかって係数を揺するという有名なテクニック)は不要になったのである。基本定理の証明の途中では広中の特異点解消定理すら必要としなくなったのである。Ambro氏のquasi-logvarietiesの理論に興味がある人には、[F4]をお勧めする。理論の本質的な部分は[F4]で全部理解出来るはずである。技術的な細部まで理解しようとすると、[F5]を読まないと仕方ないであろう。著者の私が言うのもなんだが、[F5]を読むのは大変だと思う。技術的細部に拘りまくったからである。

10おまけ:個人的な考え
ここでは、80年代から現在にいたるまで極小モデル理論で重要な位置を占めているX-論法と、最近の新しい議論について個人的な意見を少し書いてみたい。通常の論文などには書かない個人的な印象である。あくまで私の考えである。X-論法の最もすばらしい点は、その強力さにあると思う。広中の特異点解消定理と係数を揺するという小細工をつかうことにより、様々な結果を川又–Viehweg消滅定理の応用として示すことが出来るのである。

最後に少しネタをばらしておく。[F1]と[F2]で対数的標準対に対する評価付きの固定点自由性の問題を扱った。これらは川又対数的末端対に対する結果の完全な焼き直しである。数学的には大した結果ではないと思う。[F1]と[F2]はKoll´ar氏やAngehrn氏とSiu氏の議論の手直しに過ぎない。ただし、[F1]と[F2]での試行錯誤が今回の[F6]につながったので、そういう意味では[F1]と[F2]は私にとっては非常に価値があった。結局のところ、やっぱりいろいろやってみないとダメだな、と改めて思った。以上。

9 :132人目の素数さん:2024/01/08(月) 10:17:26.03 ID:OXe7qSh4.net
藤野修先生は、令和5年 大阪科学賞を受賞されています
おめでとうございます

(参考)
https://osaka-prize.ostec.or.jp/41-1
第41回(令和5年度)
大阪科学賞(OSAKA SCIENCE PRIZE)受賞者の横顔
藤野  修 (ふじの おさむ)   49歳

研究業績:小平消滅定理の一般化と代数幾何学への応用
代数多様体とは、大雑把に言うと、有限個の多項式の共通零点集合のことです。高校の教科書に出てくる円、楕円、放物線などは代数多様体です。
もっと簡単な平面上の直線も代数多様体です。高校では主にxy平面上で幾何学図形を考えます。これは二次元の空間内で一次元の代数多様体を考えることに対応します。xyz空間の中の球面も代数多様体です。これは三次元空間内の二次元の代数多様体です。
このように代数多様体は素朴な幾何学的対象です。ここで変数の数を増やしてみましょう。幾何学的には高次元の空間を考えることになります。高次元の空間内で複数の代数多様体の交わりを考えます。私たちはこのような幾何学図形を日々研究しています。
日本人フィールズ賞受賞者3名の仕事も高次元代数多様体に関するものです。
残念ながら高次元の代数多様体は絵に描くことができません。
そこで私たちは抽象的な数学理論を展開します。高次元代数多様体論の究極目標の一つは双有理分類という大雑把な分類を完成させることです。
現在の標準理論は、森重文によって1980年代に創められた森理論や極小モデル理論と呼ばれるものです。
私は小平の消滅定理と呼ばれるコホモロジーの消滅定理の一般化を確立し、広中の特異点解消と小平消滅定理の一般化を駆使して森理論の適用範囲を究極的に拡張するという仕事をしました。
ホッジ理論的な観点からは理論の混合化を実行したことになります。
これにより、従来不可能であったぐちゃぐちゃに潰れた高次元代数多様体の研究も可能になり、代数多様体の退化や特異点の研究などに応用されています。
このような基礎研究が実社会で応用される日が来ることを夢見ています。

代数多様体とは?

代数多様体の双有理分類
すでに述べましたが、代数多様体論の究極目標の一つは、代数多様体を双有理的に分類することです。

数学者の日常

小平の消滅定理の一般化

ホッジ構造
非特異射影多様体のコホモロジーにはホッジ構造と呼ばれる構造が入ります。これは純ホッジ構造と呼ばれるものになっています。一般の代数多様体のコホモロジーには純ホッジ構造は入らないのですが、混合ホッジ構造と呼ばれる純ホッジ構造を拡張したものが入ります。

総レス数 1001
709 KB
新着レスの表示

掲示板に戻る 全部 前100 次100 最新50
read.cgi ver.24052200