2ちゃんねる ■掲示板に戻る■ 全部 1- 最新50    

■ このスレッドは過去ログ倉庫に格納されています

高校数学の質問スレ Part421

1 :132人目の素数さん:2022/09/08(木) 21:03:07.97 ID:nTu3dFpc.net
【質問者必読!!】
まず>>1-4をよく読んでね

数学@5ch掲示板用 掲示板での数学記号の書き方例と一般的な記号の使用例
http://mathmathmath.dotera.net/

・まずは教科書、参考書、web検索などで調べるようにしましょう。(特に基本的な公式など)
・問題の写し間違いには気をつけましょう。
・長い分母分子を含む分数はきちんと括弧でくくりましょう。
  (× x+1/x+2 ;  ○((x+1)/(x+2)) )
・丸文字、顔文字、その他は環境やブラウザによりうまく表示できない場合があります。
 どうしても画像を貼る場合はPCから直接見られるところに見やすい画像を貼ってください。
 ピクトはPCから見られないことがあるので避けてください。
・質問者は名前を騙られたくない場合、トリップを付けましょう。
 (トリップの付け方は 名前(N)に 俺!#oretrip ←適当なトリ)
・質問者は回答者がわかるように問題を書くようにしましょう。
 でないと放置されることがあります。
 (変に省略するより全文書いた方がいい、また説明なく習慣的でない記号を使わないように)
・質問者は何が分からないのか、どこまで考えたのかを明記しましょう。
 それがない場合、放置されることがあります。
 (特に、自分でやってみたのに合わないので教えてほしい、みたいなときは必ず書くように)
・回答者も節度ある回答を心がけてください。
・970くらいになったら次スレを立ててください。

※前スレ
高校数学の質問スレ Part420
https://rio2016.5ch.net/test/read.cgi/math/1658820329/

851 :132人目の素数さん:2022/09/26(月) 19:44:18.89 ID:qtYTCS1L.net
>>844
出題君が真摯にレスをつけてくれるといいねw

852 :132人目の素数さん:2022/09/26(月) 19:44:29.09 ID:qtYTCS1L.net
>>844
出題君が真摯にレスをつけてくれるといいねw

853 :132人目の素数さん:2022/09/26(月) 19:44:53.78 ID:qtYTCS1L.net
841 名前:132人目の素数さん Mail:sage 投稿日:2022/09/26(月) 08:58:24.19 ID:qtYTCS1L
出題君のことならその通り
かててくわえて、自問自答とか哀れす

854 :132人目の素数さん:2022/09/26(月) 19:45:10.39 ID:qtYTCS1L.net
>>847
>>>846
>イナさんの解答にレスしてやれよ
>おまえ、それでも人間か?

855 :132人目の素数さん:2022/09/26(月) 19:45:37.92 ID:qtYTCS1L.net
852 名前:132人目の素数さん Mail:sage 投稿日:2022/09/26(月) 19:44:29.09 ID:qtYTCS1L
>>844
出題君が真摯にレスをつけてくれるといいねw
853 名前:132人目の素数さん Mail:sage 投稿日:2022/09/26(月) 19:44:53.78 ID:qtYTCS1L
841 名前:132人目の素数さん Mail:sage 投稿日:2022/09/26(月) 08:58:24.19 ID:qtYTCS1L
出題君のことならその通り
かててくわえて、自問自答とか哀れす

856 :132人目の素数さん:2022/09/26(月) 19:45:58.23 ID:qtYTCS1L.net
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}

857 :132人目の素数さん:2022/09/26(月) 19:46:04.81 ID:qtYTCS1L.net
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}

858 :132人目の素数さん:2022/09/26(月) 22:35:41.48 ID:d28flYvP.net
n≧1とする。
n+1個の整数
2^0,2^1,...,2^n
から無作為に異なる2つの整数を選んで足し合わせてできる整数を、3で割ったときの余りが1となる確率p_nをnで表せ。

859 :132人目の素数さん:2022/09/26(月) 22:52:11.41 ID:qtYTCS1L.net
(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}

860 :132人目の素数さん:2022/09/26(月) 22:52:24.67 ID:qtYTCS1L.net
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}

861 :132人目の素数さん:2022/09/26(月) 22:55:40.01 ID:8cD5Fi3E.net
出題者からなんのレスもないのに、一生懸命解答しようとする
イナさんには敬服します。

おしむらくは、解答が短すぎること。
もっと長い解答でレスを要求しつづけましょう。

862 :132人目の素数さん:2022/09/26(月) 22:57:29.68 ID:8cD5Fi3E.net
>前>>736
>>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
>=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
>=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
>=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
>(i)(ii)より、
>体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
>d=cosα,sinα=√(1-d^2)
>dの2次方程式を解けばなにかわかるかも。

863 :132人目の素数さん:2022/09/26(月) 22:58:00.23 ID:8cD5Fi3E.net
>>849
>>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
>=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
>=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
>=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
>(i)(ii)より、
>体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
>d=cosα,sinα=√(1-d^2)
>dの2次方程式を解けばなにかわかるかも。

864 :132人目の素数さん:[ここ壊れてます] .net
>>793
a, b, c, …, kまでは成り立つと仮定して
llx/l]個を新たに取り除く。
しかしその中のal, bl, …の倍数は既に除かれているので加える
abl、acl, …の倍数は除く
…というのとをやっていくと
lのときも正しいことが分かる。

x=nとすると
n(1-1/a)(1-1/b)…=φ(n)となる。

865 :132人目の素数さん:2022/09/27(火) 00:20:14.02 ID:wbHUtqvc.net
>>794
約数をd₁, d₂, …, dₙとすると
φ(n/d₁)+…+φ(n/dₙ)
φ(n/d₁)はd₁の倍数のうち他の約数とは互いに素なものの個数を表す。よってこの和はnになる。

n=15とすると
d₁=1、d₂=3, d₃=5、d₄=15で
φ(1)+φ(3)+φ(5)+φ(15)
=1+2+4+8=15=n
15
5 10
3 6 9 12
1 2 4 7 8 11 13 14

866 :132人目の素数さん:2022/09/27(火) 00:33:06.55 ID:wbHUtqvc.net
>>796
Σμ(d)=1-k+(k//2+ …(-1)ᵏ
=Σ[i=0, k](k//i)(-1)^i
=(1-1)ᵏ=0
平方因子を含めば当然になる。

867 :132人目の素数さん:2022/09/27(火) 01:20:42.55 ID:wbHUtqvc.net
>>797
Σμ(n/d)G(d)
においてG(d)=Σ[δ/d]F(δ)とおくと
Σμ(n/d)F(δ)=F(n)=Σμ(n/d)G(d)
(>>796を使った)

868 :132人目の素数さん:2022/09/27(火) 01:29:08.88 ID:wbHUtqvc.net
>>795
F(n)=φ(n)の時, G(n)=nだから
φ(n)=Σμ(d)(n/d)
=n-n(1/p+1+q+…)-(1/pq…)…
=n(1-1/p)…となる。

869 :132人目の素数さん:2022/09/27(火) 02:06:46.18 ID:wbHUtqvc.net
1の原始n乗根は何個あるか

870 :132人目の素数さん:2022/09/27(火) 02:06:52.58 ID:bRD/OLHR.net
𝟙*φ = 𝟙*φᵉᵁᴸ
→μ*(𝟙*φ) = μ*(𝟙*φᵉᵁᴸ)
→(μ*𝟙)*φ = (μ*𝟙)*φᵉᵁᴸ
→φ = φᵉᵁᴸ

871 :741:2022/09/27(火) 07:54:29.79 ID:EFY7TwyJ.net
>>745
お答えくださってどうもありがとう!

872 :132人目の素数さん:2022/09/27(火) 09:20:15.80 ID:CMRjnN5K.net
>>861
>出題者からなんのレスもないのに、一生懸命解答しようとする
>イナさんには敬服します。
>
>おしむらくは、解答が短すぎること。
>もっと長い解答でレスを要求しつづけましょう。

873 :132人目の素数さん:2022/09/27(火) 09:20:47.01 ID:CMRjnN5K.net
>(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ

874 :132人目の素数さん:2022/09/27(火) 09:21:22.54 ID:CMRjnN5K.net
>出題君のことならその通り
>かててくわえて、自問自答とか哀れすぎ

875 :132人目の素数さん:2022/09/27(火) 09:21:41.61 ID:CMRjnN5K.net
>出題君のことならその通り
>かててくわえて、自問自答とか哀れすぎ

>出題君のことならその通り
>かててくわえて、自問自答とか哀れすぎ

>出題君のことならその通り
>かててくわえて、自問自答とか哀れすぎ

>出題君のことならその通り
>かててくわえて、自問自答とか哀れすぎ

876 :132人目の素数さん:2022/09/27(火) 09:22:05.62 ID:CMRjnN5K.net
>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。

877 :132人目の素数さん:2022/09/27(火) 09:22:17.31 ID:CMRjnN5K.net
レスしてやれよ!w

>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。

878 :132人目の素数さん:2022/09/27(火) 09:22:45.83 ID:CMRjnN5K.net
せっかっくイナさんが詳しい解答書いてくれてるんだ。
レスしてやれw

>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。

879 :132人目の素数さん:2022/09/27(火) 09:22:55.02 ID:CMRjnN5K.net
>>878
>せっかっくイナさんが詳しい解答書いてくれてるんだ。
>レスしてやれw
>
>>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
>=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
>=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
>=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
>(i)(ii)より、
>体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
>d=cosα,sinα=√(1-d^2)
>dの2次方程式を解けばなにかわかるかも。

880 :132人目の素数さん:2022/09/27(火) 09:23:32.03 ID:CMRjnN5K.net
864 名前:132人目の素数さん Mail:sage 投稿日:2022/09/26(月) 23:48:10.67 ID:3NZ1an0O
(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
>=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
>=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
>=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
>(i)(ii)より、
>体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
>d=cosα,sinα=√(1-d^2)
>dの2次方程式を解けばなにかわかるかも。

881 :132人目の素数さん:2022/09/27(火) 09:24:44.05 ID:CMRjnN5K.net
レスしてやれよ。
出しっぱなしかよw

>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}

882 :132人目の素数さん:2022/09/27(火) 09:24:53.93 ID:CMRjnN5K.net
>>881
>レスしてやれよ。
>出しっぱなしかよw
>
>>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
>=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
>=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
>=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}

883 :132人目の素数さん:2022/09/27(火) 09:25:57.84 ID:CMRjnN5K.net
自問自答しかできない低能出題者はいらないよ

自問自答しかできない低能出題者はいらないよ

自問自答しかできない低能出題者はいらないよ

自問自答しかできない低能出題者はいらないよ

自問自答しかできない低能出題者はいらないよ

自問自答しかできない低能出題者はいらないよ

884 :132人目の素数さん:2022/09/27(火) 09:26:05.16 ID:CMRjnN5K.net
>>883
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ

885 :132人目の素数さん:2022/09/27(火) 15:14:04.72 ID:fP+nze4b.net
>>869
n乗根と原始n乗根
xⁿ-1=0、
x=cosθ+isinθ、θ=2πk/n
k=0, 1, …, n-1
既約剰余系φ(n)だけ原始n乗根はある。その他を含めてn乗根は全部でn個ある。

1の6乗根は6個ある
1、-1、(-1±√3i)/2、(1±√3i)/2
1乗根1個、2乗根1個、3乗根2個、原始6乗根2個。1、2、3、6。

886 :132人目の素数さん:2022/09/27(火) 15:44:15.41 ID:fP+nze4b.net
Fₙ(x)=Π[n/d] (x^(n/d)-1)^(μ(d))とおく
原始n乗根のみを根とする多項式
定数項は+1、1次の項の係数はμ(n)

原始n乗根の和f(n)
Σ[n/d]f(d)=1(n=1)、0(n>1)=μ(n)
原始n乗根ρに対してρᵏ (k=0, 1, …, n-1)はn乗根を表す。
(a, b)=1の時, 1のa乗根と1のb乗根をかけるとab乗根が全て出てくる。r=1、θ=2π((ay+bx)/ab)

887 :132人目の素数さん:2022/09/27(火) 15:48:27.74 ID:3Y0twqbg.net
>>842
0,α,α^2を通る円の中心はβ=α^2(α'-1)/(α-α')...①
これが1を通るとき|1-β|=|0-β|
(1-β)(1-β)'=1-β-β'+ββ'=ββ'
よってβ+β'=1だからRe(β)=1/2

まで分かりましたがこの先に進めません
円の方程式が複雑で出せません
どなたかよろしくお願いいたします

888 :132人目の素数さん:2022/09/27(火) 15:54:36.78 ID:CMRjnN5K.net
自問自答しかできない低能出題者はいらないよ

自問自答しかできない低能出題者はいらないよ

自問自答しかできない低能出題者はいらないよ

自問自答しかできない低能出題者はいらないよ

自問自答しかできない低能出題者はいらないよ

自問自答しかできない低能出題者はいらないよ

889 :132人目の素数さん:2022/09/27(火) 15:55:04.38 ID:CMRjnN5K.net
せっかっくイナさんが詳しい解答書いてくれてるんだ。
レスしてやれw

>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。

890 :132人目の素数さん:2022/09/27(火) 15:55:16.35 ID:CMRjnN5K.net
>せっかっくイナさんが詳しい解答書いてくれてるんだ。
>レスしてやれw
>
>>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
>(2) 求める距離をd、円Cをx^2+y^2=1とすると、
>例えばLはy=-dでよい。
>(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
>体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
>=4π∫[θ=-π/2→-α]dcos^2θdθ
>=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
>=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
>=4dπ(-α/2+π/4+sin2α/4)
>=-2dαπ+dπ^2+dπsin2α
>(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
>体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
>t=sinθとおくとdt=cosθdθ
>体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
>=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
>=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
>=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
>=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
>=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
>(i)(ii)より、
>体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
>d=cosα,sinα=√(1-d^2)
>dの2次方程式を解けばなにかわかるかも。

891 :132人目の素数さん:2022/09/27(火) 15:55:28.82 ID:CMRjnN5K.net
せっかっくイナさんが詳しい解答書いてくれてるんだ。
レスしてやれw

>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}
(i)(ii)より、
体積=-2dαπ+dπ^2+dπsin2α-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}=2π
d=cosα,sinα=√(1-d^2)
dの2次方程式を解けばなにかわかるかも。

892 :132人目の素数さん:2022/09/27(火) 15:55:44.19 ID:CMRjnN5K.net
883 1 名前:132人目の素数さん Mail:sage 投稿日:2022/09/27(火) 09:25:57.84 ID:CMRjnN5K
自問自答しかできない低能出題者はいらないよ

自問自答しかできない低能出題者はいらないよ

自問自答しかできない低能出題者はいらないよ

自問自答しかできない低能出題者はいらないよ

自問自答しかできない低能出題者はいらないよ

自問自答しかできない低能出題者はいらないよ

893 :132人目の素数さん:2022/09/27(火) 15:56:01.68 ID:CMRjnN5K.net
自問自答しかできない低能出題者はいらないよ

自問自答しかできない低能出題者はいらないよ

自問自答しかできない低能出題者はいらないよ

自問自答しかできない低能出題者はいらないよ

自問自答しかできない低能出題者はいらないよ

自問自答しかできない低能出題者はいらないよ

894 :132人目の素数さん:2022/09/27(火) 15:56:26.36 ID:CMRjnN5K.net
レスしてやれよ。
出しっぱなしかよw

>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}

895 :132人目の素数さん:2022/09/27(火) 15:56:50.27 ID:CMRjnN5K.net
>レスしてやれよ。
>出しっぱなしかよw

>>737(1)回転体の通過領域がちょうど重なるから明らかに最小となる。
(2) 求める距離をd、円Cをx^2+y^2=1とすると、
例えばLはy=-dでよい。
(i)回転体をx=t(-1≦t<-√(1-d^2),√(1-d^2)<t≦1)で切った断面は円環で、
体積=2π〔∫[t=-1→-√(1-d^2)]{d+√(1-t^2)}^2dt-∫[t=-1→-√(1-d^2)]{d-√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=-π/2→α](d+cosθ)^2cosθdθ-∫[θ=-π/3→-α](d-cosθ)^2cosθdθ
=4π∫[θ=-π/2→-α]dcos^2θdθ
=4dπ∫[θ=-π/2→-α](1/2+cos2θ/2)dθ
=4dπ[θ=-π/2→-α][θ/2+sin2θ/4]dθ
=4dπ(-α/2+π/4+sin2α/4)
=-2dαπ+dπ^2+dπsin2α
(ii)回転体をx=t(-√(1-d^2)≦t≦√(1-d^2))で切った断面は円で、
体積=2π∫[t=-√(1-d^2)→0]{d+√(1-t^2)}^2dt
t=sinθとおくとdt=cosθdθ
体積=2π∫[θ=α→0](d+cosθ)^2cosθdθ
=2π∫[θ=α→0](d^2cosθ+2dcos^2θ+cos^3θ)dθ
=2π∫[θ=α→0]{d^2cosθ+2d(1/2+cos2θ/2)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{d^2cosθ+d+dcos2θ)+4cosθ/3-cos3θ/3}
=2π∫[θ=α→0]{(d^2+4/3)cosθ+d+dcos2θ-cos3θ/3}
=2π[θ=α→0][{(d^2+4/3)sinθ+dθ+dsin2θ/2-sin3θ/9}
=-{(d^2+4/3)sinα+dα+dsin2α/2-sin3α/9}

896 :132人目の素数さん:2022/09/27(火) 15:57:11.15 ID:CMRjnN5K.net
883 1 名前:132人目の素数さん Mail:sage 投稿日:2022/09/27(火) 09:25:57.84 ID:CMRjnN5K
自問自答しかできない低能出題者はいらないよ

自問自答しかできない低能出題者はいらないよ

自問自答しかできない低能出題者はいらないよ

自問自答しかできない低能出題者はいらないよ

自問自答しかできない低能出題者はいらないよ

自問自答しかできない低能出題者はいらないよ
884 名前:132人目の素数さん Mail:sage 投稿日:2022/09/27(火) 09:26:05.16 ID:CMRjnN5K
>>883
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ
>
>自問自答しかできない低能出題者はいらないよ

897 :132人目の素数さん:[ここ壊れてます] .net
>>887
γz'+γ'z=zz'...①は原点を通る円の方程式である。
①がz=1を通るので
γ+γ'=1
よってRe(γ)=1/2
①にγ=1/2+ciを代入し、これがz=α=p+qiを通るならば、
(1/2+ci)(p-qi)+(1/2-ci)(p+qi)=p^2+q^2
(1/2){(p-qi)+(p+qi)}+ic{(p-qi)-(p+qi)}=p^2+q^2
p+2qc=p^2+q^2
c=(p^2+q^2-p)/2q...②
したがってこのとき
γ=(1/2)+i(p^2+q^2-p)/2q
であり、
γz'+γ'z=zz'⇔{1+i(p^2+q^2-p)}z'+{1-i(p^2+q^2-p)}z=2qzz'
(z+z')-i(p^2+q^2-p)(z-z')=zz'
これがさらにz=α^2=p^2-q^2+2pqiを通るとき、
2(p^2-q^2)+4pq(p^2+q^2-p)=(p^2-q^2)^2+(2pq)^2

無理こんなの解けない

898 :132人目の素数さん:[ここ壊れてます] .net
すいませんこれが本当に解けないのでよろしくお願いいたします
解決したところまで書きます


複素数平面上の5点O(0),A(1),B(α),C(α^2),D(1/α)について、以下の問いに答えよ。

(1)O,A,B,C,Dがすべて異なる点となるようなαの条件を求めよ。

以下、αは(1)の条件をみたすとする。

(2)3点O,A,Bを通る円が点Cも通るようなαの値をすべて求めよ。

(3)O,A,B,C,Dをすべて通る円が存在するようにαをとることはできるか。

899 :132人目の素数さん:[ここ壊れてます] .net
>>898
解決したところまで書きます

α'はαの共役複素数とする。
0,α,α^2を通る円の中心は、(ネットから拾ってきた結果を用いて)
β=α^2(α'-1)/(α-α')...①
と表される。
βを中心とする円はO(0)を通るから、この円がA(1)を通るとき
|β-1|=|β-0|
|{α^2(α'-1)/(α-α')}-1|=|α^2(α'-1)/(α-α')|
|α^2(α'-1)-(α-α')|=|α^2(α'-1)|…②
ここまでは導けましたが方程式②を解くことが困難で挫折しました
この方程式は高校範囲で解けますか?

900 :132人目の素数さん:2022/09/27(火) 20:05:02.62 ID:CMRjnN5K.net
>>898
その問題の出典を示してくれないと真面目に考える気が起きない。
出どころが出題君の糞問題だったら考えるだけ無駄だからね。

901 :132人目の素数さん:2022/09/27(火) 20:24:55.86 ID:3Y0twqbg.net
>>900
出典は旭川医大2019の第3問です
これで答えていただけますね

902 :132人目の素数さん:2022/09/27(火) 20:50:07.38 ID:3Y0twqbg.net
質問の回答待ちをしている間にもう一つ質問したいと思います。

n^2(nCk)/n!が整数となるような正整数の組(n,k)(ただしn≧k)をすべて求めよ。

903 :132人目の素数さん:2022/09/27(火) 20:51:54.79 ID:rTbfAC+/.net
ないよ
https://imgur.com/a/LPQS89v

904 :132人目の素数さん:2022/09/27(火) 23:32:58.81 ID:CMRjnN5K.net
>>901
やっぱり出題君の自問自答か。
病的な嘘つきだな、おまえ。

人間のクズだよ。

905 :132人目の素数さん:2022/09/27(火) 23:33:48.86 ID:CMRjnN5K.net
>>901は人間のクズ
このスレを荒らす張本人

906 :132人目の素数さん:[ここ壊れてます] .net
初歩的な確率の質問ですみませんが、お願いします。
15枚のカードがあって
1回目(15枚の中からランダムで5枚引く)
2回目(1回目で来た5枚のカードを除いた10枚の中からランダムで5枚引く)
3回目(1、2回目に来たカードを除いた残り5枚を引く)

という条件において、15枚のカードの中から特定の3枚のカードを引ける確率は
1回目 1−(12/15×11/14×10/13×9/12×8/11)
だと思われますが、2回目と3回目においては
単純に1−(7/10×6/9..以下略)で良いのか
それとも1回目で引ける引けない確率を何かしら考慮して計算し直す必要はありますか?

907 :132人目の素数さん:2022/09/28(水) 01:50:19.81 ID:Y6FFwkTg.net
>>906
すみません。
特定の3枚のカードを少なくとも1枚だけは引ける確率の間違いでした

908 :132人目の素数さん:2022/09/28(水) 01:59:25.49 ID:AS6nx51w.net
>>906
「引いた5枚のカードの中に特定の3枚が一枚でも含まれている確率」という意味なら1回目も2回目も3回目も同じ
全事象はn = 15!/(5!5!5!)でその中で
X:「1組目に特定の3枚のうち1枚が含まれている」
Y:「2組目に特定の3枚のうち1枚が含まれている」
Z:「3組目に特定の3枚のうち1枚が含まれている」
という条件を満たす集合をそれぞれS,T,Uとすれば
P(X) = ♯S/n、P(Y) = ♯T/n、P(Z) = ♯U/n
だけどSとTは“1組目と2組目を入れ替える”という対応で一対一に対応するから♯S = ♯T、同じ理由で♯T = ♯U
この手のくじ引き問題では1番目、2番目、3番目で有利不利なと発生しない

909 :132人目の素数さん:2022/09/28(水) 03:39:58.51 ID:UdsEDAi/.net
n,n+2,n+4がすべて素数となるようなnをすべて求めよ。

910 :132人目の素数さん:2022/09/28(水) 04:05:55.39 ID:UdsEDAi/.net
(1)3n^2+1が平方数になるような正整数nを2つ求めよ。答えのみで良い。

(2)xy平面上の曲線C:x^2-ay^2=1上に格子点が少なくとも2つあるならば、C上には格子点が無数に存在することを証明せよ。

(3)3n^2+1が平方数になるような正整数nは無数に存在することを示せ。

質問いたします。ご回答よろしくお願いいたします。

911 :132人目の素数さん:2022/09/28(水) 05:29:52.66 ID:UdsEDAi/.net
すいません質問の(2)にミスがありました
質問形式を変更し、訂正します

(1)aを正整数の定数とする。xy平面上の双曲線の一部
C:x^2-3y^2=1(x≧0,y≧0)
上の格子点を2つ求めよ。
答えのみでよい。

(2)C上にある格子点(m,n)が存在するとする。このときm,nによらない整数の定数a,b,c,dで、点(am+bn,cm+dn)をC上の格子点とするものが存在することを示せ。

(3)3n^2+1が平方数になるような正整数nは無数に存在することを示せ。

ご回答よろしくお願いいたします。

912 :132人目の素数さん:2022/09/28(水) 07:09:58.01 ID:UdsEDAi/.net
さらにミスがありました
訂正し令和完全版とします


(1)xy平面上の双曲線の一部
C:x^2-3y^2=1(x≧0,y≧0)
上の格子点を2つ求めよ。
答えのみでよい。

(2)C上にある格子点A(m,n)が存在するとする。このときm,nによらない整数の定数a,b,c,dで、点(am+bn,cm+dn)がAとは異なるC上の格子点になるものが存在することを示せ。

(3)3n^2+1が平方数になるような正整数nは無数に存在することを示せ。

ご回答よろしくお願いいたします。

913 :132人目の素数さん:2022/09/28(水) 07:13:47.09 ID:UdsEDAi/.net
せっかく朝早く起きたのでもう一問質問します

以下の条件をみたす楕円Cを求めよ。
(条件)
Cに内接する三角形で面積最大のものは、1辺の長さが1の正三角形である。

914 :132人目の素数さん:2022/09/28(水) 10:26:50.14 ID:iS/gBxGr.net
この設問だと受験数学のレベル超えてしまうな
存在を保証されてる(m,n)が自明点(±1,0)だとどうしようもない
すなわちなんも仮定なしでCは必ず非自明な有理点を持つ事を示せと同じで受験のレベルをはるかに超えてる

915 :132人目の素数さん:[ここ壊れてます] .net
>>914
(m,n)=(7,4)も比較的簡単に分かりますが、これが分かっても進展しないでしょうか。
ペル方程式を使う整数問題は、1つの格子点から2次正方行列Aを使って(m',n')=A(m,n)で次々格子点(m',n')を構成できると聞きましたが間違っていますか?

916 :132人目の素数さん:2022/09/28(水) 11:00:06.12 ID:dRCxUaGO.net
>>915
(1)の設定を(2)でも使うならCの設定は(1)外でやらないと(2)では(1)の設定のどこまで使っていいのかわからない
(2)で「格子点(m,n)を持つとする」とあるから「持つ場合、持たない場合色々あり得るけど、今回は持つ場合を考える」としか読めないし。だとするとCはそのような特定の場合に限定していいのかわからなくなる
わざわざ(2)でそのように問い直されたらそのようにしか解釈しない

917 :132人目の素数さん:2022/09/28(水) 11:04:41.11 ID:Xl7AfmM4.net
>>916
なるほど、よく理解できました。
ありがとうございました。

918 :イナ :2022/09/28(水) 17:34:32.06 ID:DjcCNbPn.net
>>844
>>913
短軸1/√3,長軸1/3
∴例えば9x^2+12y^2=4

919 :132人目の素数さん:2022/09/28(水) 19:51:41.49 ID:hGhDKRU6.net
>>917
また自問自答かよ。
ほんと人間のくずだな。オナニーばっかりやってないで、
>>918に応えてやれよ、クズ野郎

920 :132人目の素数さん:2022/09/28(水) 19:52:02.41 ID:hGhDKRU6.net
>>917
また自問自答かよ。
ほんと人間のくずだな。オナニーばっかりやってないで、
>>918に応えてやれよ、クズ野郎

921 :132人目の素数さん:2022/09/28(水) 19:52:17.89 ID:hGhDKRU6.net
>>>917
>また自問自答かよ。
>ほんと人間のくずだな。オナニーばっかりやってないで、
>>>918に応えてやれよ、クズ野郎

922 :132人目の素数さん:2022/09/28(水) 19:52:56.52 ID:hGhDKRU6.net
>>917
>なるほど、よく理解できました。
また自問自答かよ。
ほんと人間のくずだな。オナニーばっかりやってないで、
>>918に応えてやれよ、クズ野郎

923 :132人目の素数さん:2022/09/28(水) 19:53:27.02 ID:hGhDKRU6.net
>>917
>なるほど、よく理解できました。
>ありがとうございまし

また自問自答かよ。
ほんと人間のくずだな。オナニーばっかりやってないで、
>>918に応えてやれよ、クズ野郎

924 :132人目の素数さん:2022/09/28(水) 19:53:36.89 ID:hGhDKRU6.net
>>917
>なるほど、よく理解できました。
>ありがとうございまし

また自問自答かよ。
ほんと人間のくずだな。オナニーばっかりやってないで、
>>918に応えてやれよ、クズ野郎

925 :132人目の素数さん:2022/09/28(水) 19:54:06.17 ID:hGhDKRU6.net
>>917
>なるほど、よく理解できました。
>ありがとうございまし

また自問自答かよ。
ほんと人間のくずだな。オナニーばっかりやってないで、
>>918に応えてやれよ、クズ野郎

>>917
>なるほど、よく理解できました。
>ありがとうございまし

また自問自答かよ。
ほんと人間のくずだな。オナニーばっかりやってないで、
>>918に応えてやれよ、クズ野郎

926 :132人目の素数さん:2022/09/28(水) 19:54:33.34 ID:hGhDKRU6.net
>>917
>なるほど、よく理解できました。
>ありがとうございまし

また自問自答かよ。
ほんと人間のくずだな。オナニーばっかりやってないで、
>>918に応えてやれよ、クズ野郎

>>917
>なるほど、よく理解できました。
>ありがとうございまし

また自問自答かよ。
ほんと人間のくずだな。オナニーばっかりやってないで、
>>918に応えてやれよ、クズ野郎

927 :132人目の素数さん:2022/09/28(水) 19:54:44.20 ID:hGhDKRU6.net
>>917
>なるほど、よく理解できました。
>ありがとうございまし

また自問自答かよ。
ほんと人間のくずだな。オナニーばっかりやってないで、
>>918に応えてやれよ、クズ野郎

928 :132人目の素数さん:2022/09/28(水) 19:55:15.54 ID:hGhDKRU6.net
>917 9 名前:132人目の素数さん Mail:sage 投稿日:2022/09/28(水) 11:04:41.11 ID:Xl7AfmM4
>>>916
>なるほど、よく理解できました。
>ありがとうございました。

また自問自答かよ。
ほんと人間のくずだな。オナニーばっかりやってないで、
>>918に応えてやれよ、クズ野郎

929 :132人目の素数さん:2022/09/28(水) 19:55:31.34 ID:hGhDKRU6.net
>917 9 名前:132人目の素数さん Mail:sage 投稿日:2022/09/28(水) 11:04:41.11 ID:Xl7AfmM4
>>>916
>なるほど、よく理解できました。
>ありがとうございました。

また自問自答かよ。
ほんと人間のくずだな。オナニーばっかりやってないで、
>>918に応えてやれよ、クズ野郎

930 :132人目の素数さん:2022/09/29(木) 07:02:59.85 ID:0Zp86ZDJ.net
aを正整数の定数とするとき、xy平面上の双曲線の一部
C:x^2-ay^2=1(x≧0,y≧0)
の非自明な格子点を1つ求めたいのですが、その一般的な解法は確立されているのでしょうか。

931 :132人目の素数さん:2022/09/29(木) 07:47:06.79 ID:0Zp86ZDJ.net
nを正整数の定数とする。
xy平面上の双曲線の一部
C:x^2-(n^2-1)y^2=1(x≧0,y≧0)
について、以下の問いに答えよ。

(1)C上の格子点を2つ求めよ。答えのみでよい。

(2)C上には無数の格子点が存在することを示せ。

(3)C上の格子点で、(1)で求めたもの以外のものを2つ求めよ。

932 :132人目の素数さん:2022/09/29(木) 09:18:57.67 ID:tChEfH3q.net
他スレでやれよ、馬鹿!

933 :132人目の素数さん:2022/09/29(木) 09:19:28.33 ID:tChEfH3q.net
>>930
ほんと人間のくずだな。
オナニーばっかりやってないで、
>>918に応えてやれよ、クズ野郎

934 :132人目の素数さん:2022/09/29(木) 09:19:46.50 ID:tChEfH3q.net
>>931
ほんと人間のくずだな。
オナニーばっかりやってないで、
>>918に応えてやれよ、クズ野郎

935 :132人目の素数さん:2022/09/29(木) 09:20:02.20 ID:tChEfH3q.net
>>930,931
ほんと人間のくずだな。
オナニーばっかりやってないで、
>>918に応えてやれよ、クズ野郎

936 :132人目の素数さん:2022/09/29(木) 09:21:02.92 ID:tChEfH3q.net
>>930
ほんと人間のくずだな。
オナニーばっかりやってないで、
>>918に応えてやれよ、クズ野郎

937 :132人目の素数さん:2022/09/29(木) 09:21:16.52 ID:tChEfH3q.net
>>931
ほんと人間のくずだな。
オナニーばっかりやってないで、
>>918に応えてやれよ、クズ野郎

938 :132人目の素数さん:2022/09/29(木) 09:21:31.93 ID:tChEfH3q.net
>>930
ほんと人間のくずだな。
オナニーばっかりやってないで、
>>918に応えてやれよ、クズ野郎

939 :イナ :2022/09/29(木) 12:22:37.38 ID:Fosm+OU/.net
>>918
>>931(1)(n,1),(1,0)
(2)(n,1)は無数に存在する正整数nにより無数に存在する。
(3)n=5なら(5,1)がC上の格子点である。
n=9なら(9,1)がC上の格子点である。
∴例えば(5,1),(9,1)

940 :132人目の素数さん:2022/09/29(木) 14:24:24.73 ID:0Zp86ZDJ.net
ペル方程式の本質に迫るため質問させてください

aを正整数の定数とする。
x^2-ay^2=1
をみたす非負整数(x,y)のうち、xとyがともにn以下であるものの個数をf(n)とする。またxとyがともにn以下で、xとyが互いに素であるものの個数をg(n)とする。
lim[n→∞] g(n)/f(n)を求めよ。

941 :132人目の素数さん:[ここ壊れてます] .net
1

942 :132人目の素数さん:2022/09/29(木) 15:38:52.03 ID:tChEfH3q.net
>>940
おい、クズ野郎!
>>918に応えるのが先だろ、人非人!!

943 :132人目の素数さん:2022/09/29(木) 15:39:06.02 ID:tChEfH3q.net
>>940
おい、クズ野郎!
>>918に応えるのが先だろ、人非人!!

944 :132人目の素数さん:2022/09/29(木) 15:39:17.90 ID:tChEfH3q.net
>>943
>>>940
>おい、クズ野郎!
>>>918に応えるのが先だろ、人非人!!

945 :132人目の素数さん:2022/09/29(木) 16:32:13.67 ID:0Zp86ZDJ.net
>>942
レスしても良いですけれど、そちらのお願いなのですから丁寧な言葉遣いをしてほしいものです
ご一考のほどよろしくお願いいたします

946 :132人目の素数さん:2022/09/29(木) 16:45:27.45 ID:CipT0pOq.net
ペル方程式関係なくて草

947 :132人目の素数さん:2022/09/29(木) 17:25:59.10 ID:tChEfH3q.net
>>945
おまえみたいな性根が腐ってるやつがいくら丁寧な言葉使いで書き込みしても、薄汚く聞こえるだけ。
同様に、クズに向かって丁寧な言葉で話しかけるのも薄汚く聞こえてしまう。

だから、クズを相手にするのに相応しい言葉で応じてるんだよ。

948 :132人目の素数さん:2022/09/29(木) 17:26:58.25 ID:tChEfH3q.net
>>945
おい、クズ野郎
>>918に応えてあげるのが先決だろ。ふざけるな。

949 :132人目の素数さん:2022/09/29(木) 18:14:50.06 ID:0Zp86ZDJ.net
>>947
それでは他人は動きませんよ
もう一度チャンスをあげますから、丁寧にお願いをしてみてはいかがですか?

950 :132人目の素数さん:2022/09/29(木) 18:37:23.36 ID:tChEfH3q.net
>>949
おい、薄汚い低能のクズ野郎。
>>918に応えてやれよ、ドアホウ。

これでいいか?

951 :132人目の素数さん:2022/09/29(木) 18:38:45.01 ID:tChEfH3q.net
>>949
おい、薄汚い低能のクズ野郎。
自問自答ばかりしてないで、>>918に応えてやれよ、キチガイ!

と、精一杯丁寧にお願いしてみたぞ。

総レス数 1001
459 KB
新着レスの表示

掲示板に戻る 全部 前100 次100 最新50
read.cgi ver.24052200