2ちゃんねる ■掲示板に戻る■ 全部 1- 最新50    

■ このスレッドは過去ログ倉庫に格納されています

現代数学の系譜11 ガロア理論を読む12

1 :132人目の素数さん:2015/02/15(日) 08:46:03.29 ID:wOLNHI5U.net
旧スレが500KBオーバーに近づいたので、新スレ立てる
このスレはガロア原論文を読むためおよび関連する話題を楽しむスレです
(最近は、スレ主の趣味で上記以外にも脱線しています。ネタにスレ主も理解できていないページのURLも貼ります。ガロア関連のアーカイブの役も期待して。)
過去スレ
現代数学の系譜11 ガロア理論を読む11
http://wc2014.2ch.net/test/read.cgi/math/1420001500/
現代数学の系譜11 ガロア理論を読む10
http://wc2014.2ch.net/test/read.cgi/math/1411454303/
現代数学の系譜11 ガロア理論を読む9
http://wc2014.2ch.net/test/read.cgi/math/1408235017/
現代数学の系譜11 ガロア理論を読む8
http://wc2014.2ch.net/test/read.cgi/math/1364681707/
現代数学の系譜11 ガロア理論を読む7
http://uni.2ch.net/test/read.cgi/math/1349469460/
現代数学の系譜11 ガロア理論を読む6
http://uni.2ch.net/test/read.cgi/math/1342356874/
現代数学の系譜11 ガロア理論を読む5
http://uni.2ch.net/test/read.cgi/math/1338016432/
現代数学の系譜11 ガロア理論を読む(4)
http://uni.2ch.net/test/read.cgi/math/1335598642/
現代数学の系譜11 ガロア理論を読む3
http://uni.2ch.net/test/read.cgi/math/1334319436/
現代数学の系譜11 ガロア理論を読む2
http://uni.2ch.net/test/read.cgi/math/1331903075/
現代数学の系譜11 ガロア理論を読む
http://uni.2ch.net/test/read.cgi/math/1328016756/

(古いものは、そのままクリックで過去ログが読める。また、ネットで検索すると、無料の過去ログ倉庫やキャッシュがヒットして過去ログ結構読めます。)

423 :現代数学の系譜11 ガロア理論を読む:2015/03/07(土) 19:18:32.02 ID:CATUi/5b.net
>>421
一応これを押さえて・・
http://ja.wikipedia.org/wiki/Well-defined
well-defined は、ある概念が数学的あるいは論理学的に特定の条件を公理に用いて定義・導入されるとき、その定義(における公理の組)が自己矛盾をその中に含み持たぬ状態にあることを言い表す修飾語句である。
また、ある概念の定義をする場合、そう決めることによって、何も論理的な矛盾なく上手くいくということ(定義の整合性)が確認されているということを言い表す言葉である。
文脈により、「うまく定義されている」「矛盾なく定まった」「定義可能である」などと表現されることもある。

well-defined は「状態」を表す形容詞であるが、日本語の定訳はなく慣例的に形容詞と動詞の複合語に訳されるか、そのまま形容動詞的に「well-defined である」といった形で用いる。
名詞形 well-definedness などもあり、これを well-defined 性と記すことはできるが日本語訳としてこなれたものは特には存在しない(文脈によっては「定義可能性」などで代用可能である)。
概要

以下の二つが示せたとき、定義が well-defined であるという[1]。

(1) 定義で使われる方法が実際にうまくいく。
(2) 定義がもともとの対象から複数定まる対象を経由して行われる場合、結果がもともとの対象にのみ依存する。

一つの対象のある表示に対して定義が満たされるが、別のある表示については満たされない状況であるとか、
一つの対象の異なる表示を考えると定義の示す結果がそれぞれの表示に対して異なるといった状況であるならば、与えられた定義はその対象自体に対する定義として不適切 (ill-defined) である。

424 :132人目の素数さん:2015/03/07(土) 19:32:27.58 ID:I5d5jn+t.net
(1)ができないのに(3)が一番簡単って、さすが笑わせてくれる

425 :現代数学の系譜11 ガロア理論を読む:2015/03/07(土) 19:44:05.45 ID:CATUi/5b.net
>>417
Q(3)
G を群とし、N を G の正規部分群とする。
剰余群 G/N における演算の定義を述べ、
それが well-defined であることを示せ。

Q(3)
g1,g2・・・∈G、積を*で表す。また、n1,n2・・∈Nとする
剰余群 G/Nの要素を、g1N,g2N・・・と表す。g1N={g1*n1,g1*n2,・・・}以下同様
但し、g1,g2・・・は、上記Nでの剰余類別の代表元とする

剰余群 G/Nの積を、giN*gjN=gi*gjNで表す
∵giN*gjN=gi*(N*gj)*N=gi*(gj*N)*N=gi*gjN
(正規部分群であるから、gjN=Ngjなどが成り立つ)
単位元は、N自身とする。あるいは、eNと解する。実際、eN=Nであるから

あと、逆元の存在を言って、well-defined の話か・・
まあ、メシ食って考えるわ

426 :132人目の素数さん:2015/03/07(土) 20:47:56.94 ID:Pt6N2tUG.net
いや本とかwikipediaとか見るなって

427 :132人目の素数さん:2015/03/07(土) 20:54:15.35 ID:Pt6N2tUG.net
>>425
定義は
>剰余群 G/Nの積を、giN*gjN=gi*gjNで表す
までで十分。
そのあとの
>∵giN*gjN=gi*(N*gj)*N=gi*(gj*N)*N=gi*gjN
これは集合としての計算だと思えば N*N=N は一般には成り立たないので×
剰余類としての計算だと思えば gi*(N*gj)*N などが出てくるはずがないのでやはり×

それから、単位元とか逆元とかは well-defined の証明の後にするべき。
そもそも演算になってるかどうかわからないのに単位元も何もない。

428 :132人目の素数さん:2015/03/07(土) 21:02:21.74 ID:Pt6N2tUG.net
あとそういえば
G/N は非可算無限集合かもしれないから、g1,g2,...という添え字付けは不適切

429 :現代数学の系譜11 ガロア理論を読む:2015/03/07(土) 21:05:06.49 ID:CATUi/5b.net
>>425 つづき
メシ食って考えた

逆元の存在:
任意のgi(gi?N)に対して、逆元のgi^(-1)?Nが言える
∵逆元のgi^(-1)∈Nなら、Nは群なのでgi∈Nとなるので矛盾

よって、剰余群 G/Nの積の定義、単位元、逆元の存在は示した。あと、結合法則があるが、元の群の積を流用しているので成り立つ。
http://ja.wikipedia.org/wiki/%E7%BE%A4_%28%E6%95%B0%E5%AD%A6%29
群 定義

well-defined:
1.>>423の「(1) 定義で使われる方法が実際にうまくいく。 」は、終わった
2.>>423の「(2) 定義がもともとの対象から複数定まる対象を経由して行われる場合、結果がもともとの対象にのみ依存する。」を示すには、>>425”g1,g2・・・は、上記Nでの剰余類別の代表元”が一意であることを示せばよい

430 :現代数学の系譜11 ガロア理論を読む:2015/03/07(土) 21:17:53.95 ID:CATUi/5b.net
>>429 つづき

3.正規部分群の定義:「G における H を法とする左剰余類全体の成す集合と右剰余類全体の成す集合とが一致する。」を認めることとする
4.そうすると、左剰余類あるいは右剰余類が、それぞれ一意に定まることを言えば、剰余類は一意に定まる
5.そうすると、>>423のwell-definedの(2)がいえるので、well-definedのwikipediaによる定義を満たすことになる

「左剰余類あるいは右剰余類が、それぞれ一意に定まる」が、ちょっとね
ラグランジュの定理の証明などを使うと思ったが、ちょっと考えてみるよ
http://ja.wikipedia.org/wiki/%E7%BE%A4_%28%E6%95%B0%E5%AD%A6%29
剰余類・剰余群
部分群 H と G の元 g について、gH はある G の部分集合になる。2 つの g, g' について gH, g'H は全く一致するか交わらないかのいずれかである。従って、

G = \bigcup_{\lambda \in \Lambda} g_{\lambda} H

と直和に書き表せる。それぞれの gH を (H を法とする g の属する G の) 剰余類(または傍系)という。|gH| = |H| が成り立つので結局 |G| = |Λ||H| が成り立つ。
G が有限群ならばこれは H の位数が G の位数を割り切るということをいっている(ラグランジュの定理)。
特に素数位数の群は巡回群である。|Λ| を [G: H] とか (G: H) などと書いて H の(G に対する)指数という。

431 :132人目の素数さん:2015/03/07(土) 21:21:18.71 ID:Kj5to7DQ.net
おいおいスレ主さん大丈夫か?

432 :現代数学の系譜11 ガロア理論を読む:2015/03/07(土) 21:30:12.21 ID:CATUi/5b.net
>>417 つづき (>>429は残して(その内なんか思いつくかも))

これ行ってみようか?
Q(2)
G を群とする。
 C(G)={g∈G | gh=hg ∀h∈G}
とおき、これを G の中心と呼ぶ。
C(G) が G の正規部分群であることを示せ。

A(2)
よく見ると、簡単かな?
えーと、Q(3)みたく、単位元と逆元がC(G)が含まれることを言えれば、結合則は自明で良いでしょ

433 :132人目の素数さん:2015/03/07(土) 21:41:09.42 ID:Pt6N2tUG.net
>>417
・群の定義
・準同型写像の定義
・正規部分群の定義
(・剰余群の定義)
のみを知っていれば、あとは考えればわかるように選んだ。
なので他の文献は参照しないでやってみてほしい。

>>432
部分群であるためには、あとは積について閉じている、すなわち
g1,g2∈C(G) ならば g1g2∈C(G)
も必要。

434 :現代数学の系譜11 ガロア理論を読む:2015/03/07(土) 21:59:51.28 ID:CATUi/5b.net
>>432 つづき

単位元:
eh=he ∀h∈Gだから、e∈C(G)

逆元:
gh=hg ∀h∈Gから、g^(-1)∈C(G)を導く

gh=hgに、
g^(-1)を掛けて、g^(-1)gh=g^(-1)hg→h=g^(-1)hg
g^(-1)を逆から掛けて、同様に、h=ghg^(-1)が成り立つ

gh=hgに、g^(-2)=g^(-1)g^(-1)を掛けて
g^(-1)h=g^(-2)hg=g^(-2)(ghg^(-1))g=g^(-1)h=g^(-1)ghg^(-1)=hg^(-1)
つまり
g^(-1)h=hg^(-1)。よって、g^(-1)∈C(G)

ここで、結合則は群Gでの演算則を使った
C(G)でも、結合則は群Gと同様とする
よって、C(G)は群を成す
定義より、gh=hg ∀h∈Gであるから、C(G)は正規部分群

435 :現代数学の系譜11 ガロア理論を読む:2015/03/07(土) 22:04:49.73 ID:CATUi/5b.net
>>433
どうも。スレ主です。

>なので他の文献は参照しないでやってみてほしい。

ああ、いまのところ、参照しているのは、群の定義の確認くらいだ
オリジナルで間に合っているよ
ところで、準同型写像の定義か・・、ああ、あれね。積とか保存される写像だったけね・・

436 :現代数学の系譜11 ガロア理論を読む:2015/03/07(土) 22:50:57.76 ID:CATUi/5b.net
>>417
では、これ

Q(1)
G,G' を群とし、f:G→G' を準同型写像とする。
f の核 Ker(f) が G の正規部分群であることを示せ。
なお f の核とは、G' の単位元を e' としたときの
集合 {g∈G | f(g)=e'} のことである。

A(1)
1.準同型も、群環体といろいろだが、要は代数構造が保存されると
2.群準同型:f(xy)=f(x)f(y)と積の構造が保存されると
3.それで、証明の方針としては、
 保存則は自明として
 1) Ker(f) が群を成す。つまり、単位元と逆元の存在
 2)群が正規部分群であることを示す。この場合は、「N=gNg^-1」の形が使い易いだろう

437 :132人目の素数さん:2015/03/07(土) 22:53:35.88 ID:Fg5OOJTO.net
絶賛迷走中

438 :132人目の素数さん:2015/03/07(土) 23:01:12.04 ID:Pt6N2tUG.net
>>434
正規であることの証明が本当に理解できているのか怪しい感じだが、まあ間違ってはないか。
積について閉じていることの証明がまだだ。

well-defined を知らないんだったら(3)は無理にやらなくていいよ。
知識を問いたいわけじゃないから。
well-defined の意味を知らずに>>423だけ見て正しい証明を書くなんて、少なくとも俺にはできない。

439 :現代数学の系譜11 ガロア理論を読む:2015/03/07(土) 23:21:09.78 ID:CATUi/5b.net
>>436 つづき

Ker(f) が群を成す。つまり、単位元と逆元の存在:
f(e)=e' でなければならない。(e∈G、e'∈G')
∵f(e)=bとする。f(a)=a' とすると、f(a)=f(ea)=f(e)f(a)=ba'=a'。ゆえにb=e'。

次に、g∈Ker(f) からg^(-1)∈Ker(f) を導く
g∈Ker(f) からf(g)=e'。このときf(g^(-1))=bとする。f(e)=e' より
e'=f(e)=f(gg^(-1))=f(g)f(g^(-1))=e'b=b。即ちb=e'から、g^(-1)∈Ker(f) が言える

g1,g2∈Ker(f) ならば g1g2∈Ker(f) も必要? まあ、大学の試験なら書いてないと減点だろうね
g1,g2∈Ker(f) から、f(g1)=e' & f(g2)=e'で、f(g1g2)=f(g1)f(g2)=e'e'=e'。よって、g1g2∈Ker(f) が言える

440 :現代数学の系譜11 ガロア理論を読む:2015/03/07(土) 23:40:21.42 ID:CATUi/5b.net
>>439 つづき

群が正規部分群であることを示す。「N=gNg^-1」の形を使う
n∈Ker(f) とする
f(g)=g' (g∈G、g'∈G')とする。このとき、f(g^-1)=g'^-1である
(∵e'=f(e)=f(gg^-1)=f(g)f(g^-1)=g'f(g^-1)であるから、g'^-1を左から掛けて、f(g^-1)=g'^-1を得る)
f(gng^-1)=f(g)f(n)f(g^-1)=g'e'g'^-1=g'g'^-1=e'

つまり、gng^-1∈Ker(f) であるから、正規部分群の定義を満たす

441 :132人目の素数さん:2015/03/07(土) 23:41:36.77 ID:Kj5to7DQ.net
>>440
これは酷い

442 :132人目の素数さん:2015/03/07(土) 23:53:10.04 ID:Pt6N2tUG.net
>>439>>440
うん、いいんじゃないかな

>>441
逆の包含を言ってないってことか?
それは問題ない。が、スレ主が分かっててやってるかは知らないので説明はスレ主に譲る。

443 :現代数学の系譜11 ガロア理論を読む:2015/03/07(土) 23:58:31.12 ID:CATUi/5b.net
>>438

>積について閉じていることの証明がまだだ。

そうだね。大学の定期試験なら減点だろう
g1,g2∈C(G) ならば g1g2∈C(G) >>433だね

g1,g2∈C(G) ならば 定義より、g1h=hg1 & g2h=hg2
よって、g1g2h=g1(g2h)=g1(hg2)=(g1h)g2=(hg1)g2=hg1g2 が成り立つから、 g1g2∈C(G)が言える

444 :132人目の素数さん:2015/03/07(土) 23:59:22.77 ID:Kj5to7DQ.net
わかっていようがいまいが、それをきちんと示さなければ、定義を満たしていることを示したことにならない。

445 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 00:03:00.51 ID:AXAfK1QO.net
>>428

>G/N は非可算無限集合かもしれないから、g1,g2,...という添え字付けは不適切

お言葉なれど、そうでもないと思う
ヒントは、選択公理
つまり、非可算無限集合から適当に選んだと解釈できる

446 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 00:03:54.50 ID:AXAfK1QO.net
>>444
いやいや、お説ごもっともだ
おっしゃる通りだね

447 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 00:15:28.80 ID:AXAfK1QO.net
>>438

>well-defined を知らないんだったら

全く知らないわけじゃないが、well-defined は、多義性があると思うんだ
人によって(というか本とか場面で)微妙にね

で、共通認識として、>>423を出した。この線でやってみようと
>>417(3)で、一般に剰余類が、右剰余類が1通り、左剰余類が1通り、計2通り。正規部分群なら、1通り。
それで、>>423の「(2) 定義がもともとの対象から複数定まる対象を経由して行われる場合、結果がもともとの対象にのみ依存する。」に合うだろうと

正規部分群の性質を強く使えば、1通りはすぐ言えそうだが
右剰余類が1通り・・辺りが、うまく言えない・・

448 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 00:21:30.38 ID:AXAfK1QO.net
>>429

文字化けしとるね

(訂正)
任意のgi(gi?N)に対して、逆元のgi^(-1)?Nが言える

任意のgi(gi not∈N)に対して、逆元のgi^(-1) not∈Nが言える

449 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 00:24:35.14 ID:AXAfK1QO.net
>>441-442
逆の包含? ちょっと意味が取れない

450 :132人目の素数さん:2015/03/08(日) 00:27:24.55 ID:P7UvCxav.net
やっぱわかってないんかーい

スレ主は正規部分群の定義に「N=gNg^-1」を用いた。
しかし>>440の論証では N⊂gNg^(-1) しか言えていない。
逆はどうなのよ?って話。

451 :132人目の素数さん:2015/03/08(日) 00:28:04.57 ID:VjCS44NK.net
>>449
二つの集合が等しいとは?

452 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 00:33:28.88 ID:AXAfK1QO.net
>>427

>>∵giN*gjN=gi*(N*gj)*N=gi*(gj*N)*N=gi*gjN
>これは集合としての計算だと思えば N*N=N は一般には成り立たないので×
>剰余類としての計算だと思えば gi*(N*gj)*N などが出てくるはずがないのでやはり×

まあ、定義と表現の関係だから、>>425程度で良いと思うよ
N→∀n∈Nとして

∵giN*gjN=gi*(N*gj)*N=gi*(gj*N)*N=gi*gjN
 ↓
∵gi∀n*gj∀n=gi*(∀n*gj)*∀n=gi*(gj*∀n)*∀n=gi*gj∀n

だと。2ちゃんねるで、TEXなみの表現を求められてもね
上付き下付の文字も使えないし

453 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 00:35:46.46 ID:AXAfK1QO.net
>>450
なるほど
ご指摘ありがとう
考えてみるよ

454 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 00:43:37.16 ID:AXAfK1QO.net
>>450

>スレ主は正規部分群の定義に「N=gNg^-1」を用いた。
>しかし>>440の論証では N⊂gNg^(-1) しか言えていない。
>逆はどうなのよ?って話。

>>440の「n∈Ker(f) とする」→「∀n∈Ker(f) とする」
でどう?

455 :132人目の素数さん:2015/03/08(日) 01:00:52.80 ID:VjCS44NK.net
>>454
「n∈Ker(f) とする」と書けば普通「∀n∈Ker(f) とする」の意味だよ
逆に、ある特定の n∈Ker(f) でだけ gng^-1∈Ker(f) だとしたら、g・Ker(f)・g^-1⊂Ker(f) さえ言えていないことになる。

456 :132人目の素数さん:2015/03/08(日) 01:09:56.12 ID:P7UvCxav.net
>>452
>>427ではっきりとは言わなかったがそもそもその議論は不要。
giN*gjN=gi*gjN は定義であって、証明するものじゃない。

あと N*N=N は一般には成り立たないと書いたが間違いだった。すまない。
(環のイデアルについて似たようなことがあったので混同してた)

457 :132人目の素数さん:2015/03/08(日) 01:11:12.44 ID:P7UvCxav.net
>>450の包含も逆じゃん・・・
今日はもう寝よう

458 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 07:20:07.61 ID:AXAfK1QO.net
>>450>>454-457
どうも。スレ主です。

起きてきました
しかし、みなさんレベルが高いね
びっくりしました

>>440の「n∈Ker(f) とする」→「∀n∈Ker(f) とする」”
ここね、実はちょっと気になっていたんだ。どう書くべきか。∀を付けるか、別の記号か。あるいは日本語で、”任意の”とするか
が、面倒なので1秒でスルーした

そこをすかさず突っ込みが入る

>スレ主は正規部分群の定義に「N=gNg^-1」を用いた。
>しかし>>440の論証では N⊂gNg^(-1) しか言えていない。
>逆はどうなのよ?って話。

そうそう。数学科だったら、そういうべきだよね
さすがです

459 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 07:34:21.81 ID:AXAfK1QO.net
>>455
どうも。スレ主です。

>「n∈Ker(f) とする」と書けば普通「∀n∈Ker(f) とする」の意味だよ

もともと、そうですよ
当然ながら

が、>>458で書いたように、丁寧に書けば、3通りくらいの表現は浮かんだけど、「めんどう」と思ったのでスルーした
実際、∀なんて、いま記号一覧開いて入力しているし、他の文からコピペできるけど、手が止まるからね

が、そこに敏感に反応するのは、お二人ともレベルが高いです
「N=gNg^-1」→N⊂gNg^(-1) & N⊃gNg^(-1) が瞬時に浮かんでいるわけね。さすが
こっちは、無意識に、頭に浮かんだKer(f) のイメージで流して書いているから、=なら集合の包含を二つ(不等式なら>と<と)が浮かんでない。まだ甘いね
間違ってはいないが、=使うならそう見られているという意識は、なかったね、正直

460 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 07:44:57.17 ID:AXAfK1QO.net
>>456
>>>427ではっきりとは言わなかったがそもそもその議論は不要。
>giN*gjN=gi*gjN は定義であって、証明するものじゃない。

そうそう。さすがです
定期試験とか、院試とか
ここらは見られるよね(余談だが、だいたいああいう試験は、「基本ができているか?」はしっかり見られるんだ)
専門の論文なら、省略の決まった流儀があるはず

適当に流した。”giN*gjN=gi*gjN ”をきちんと集合の要素から、丁寧に説明する。群論入門なんかに普通に書いてあるように
が、つい丁寧にが、面倒になってね。手抜きしたら、結局おかしいよね。後から見ると。手抜きしちゃいかんね

461 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 09:28:20.82 ID:AXAfK1QO.net
>>447
well-definedに戻る

>>423の「(2) 定義がもともとの対象から複数定まる対象を経由して行われる場合、結果がもともとの対象にのみ依存する。」を示すことにする

”複数定まる対象を経由して行われる場合”は無視して、”結果がもともとの対象にのみ依存する”、つまり一意になることを示そう

1.剰余類別 G/Nが一意になることを示す。
 >>438"well-defined を知らないんだったら(3)は無理にやらなくていいよ。"と許可があったので、エムポストニコフを参照する
http://www.amazon.co.jp/dp/B000JAFUOC ガロアの理論 (1964年) エム・ポストニコフ (著), 日野 寛三 (著)
(P25より)(ここでは、本に合わせて、群Gを部分群Hで類別することとする)
 1)g∈Hgで、かってなg'∈Hgを取る
 2)定義より、g'=h'g ここに、h'は部分群Hのある元
 3)元g'の剰余類Hg'を考える
 4)任意の元は、hg'、即ちhh'g, h∈Hと書ける
 5)hh'∈Hであるから、Hg'の任意の元はHgに属する
 6)即ちHg'⊂Hg
 7)一方、任意の元 hg∈Hgは、h(h')^-1h'g=h(h')^-1g'と書ける((h')^-1は、h'の逆元を示す)
 8)h(h')^-1∈Hであるから、hg∈Hg'
 9)このようにして、Hg'⊃Hg

以上より、Hg'=Hgが証明された。すなわち、剰余類Hgの任意の元g'の剰余類Hg'はHgと一致する
即ち、2つの剰余類が交われば、これらは一致する
また、剰余類Hgは、g∈Hのとき、そのときに限り部分群Hと一致する。(部分群Hは単位元eの剰余類と見なすことができる)

462 :132人目の素数さん:2015/03/08(日) 09:46:21.19 ID:AXAfK1QO.net
>>461 つづき

前スレで、群Gを部分群Hで類別することの一意性はほぼ示されているが、だめ押し

整列可能定理(下記)を認めるとする
http://ja.wikipedia.org/wiki/%E6%95%B4%E5%88%97%E9%9B%86%E5%90%88
(選択公理に同値な)整列可能定理は、任意の集合が整列順序付け可能であることを主張するものである。整列可能定理はまたツォルンの補題とも同値である。
(引用おわり)

群Gの要素を、整列可能定理により、g1,g2,g3,・・・と並べる
部分群Hによる類別を頭から行う
類別した要素は、取り除く
これを繰り返して、全ての群の要素を類別する
この類別は一意である(∵手順が一意であるから。なお、一意の証明(例えば一意でないとして矛盾を導く)は思いついていないが、考えればできるでしょう・・(^^ )

2.群Gを部分群Hで類別することが証明されたので、剰余類別 G/Nも一意になる(右剰余類別、左剰余類別とも一意であり、正規部分群だから両者は一致する)
(証明おわり)

よって、”結果がもともとの対象にのみ依存する”が言えたので、>>423の意味でwell-definedである

463 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 09:56:15.17 ID:AXAfK1QO.net
>>447 補足

>正規部分群の性質を強く使えば、1通りはすぐ言えそうだが

先に群Gを部分群Hで類別することの一意性から、1通りを言ったが
正規部分群の性質から、商群を成すを使うと、二通りの類別、例えばHg'≠Hg(g'≠g)のような要素が出てくると
例えば、群を成すから、逆元も異なるし、積も異なるしと、全体が異なってしまう・・

そういう筋で証明できると思うんだが・・
実際に実行するとなると、大変そうなのでやめた

464 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 09:58:01.61 ID:AXAfK1QO.net
>>463 訂正

正規部分群の性質から、商群を成すを使うと、二通りの類別、例えばHg'≠Hg(g'≠g)のような要素が出てくると
 ↓
正規部分群の性質から、商群を成すを使うと、二通りの類別、例えばNg'≠Ng(g'≠g)のような要素が出てくると

465 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 10:01:08.53 ID:AXAfK1QO.net
>>461 補足

群Gを部分群Hで類別することについては、ラグランジュの定理の証明で、どの本にでも書いてあるが
エム・ポストニコフ は、きわめて簡素かつ簡明に記載しているので、個人的には気に入っているんだ

466 :132人目の素数さん:2015/03/08(日) 10:03:00.93 ID:J8kzGD0a.net
スレ主の脳が極めて単純に出来ていることがよく分かった。

467 :132人目の素数さん:2015/03/08(日) 10:25:38.63 ID:ndRfUVoG.net
>>411
>矛盾が生じれば背理法が成立して万々歳。
そうでないと証明出来ない命題があるから、そうだよな。
今まで、議論の中で条件を背理法の枠組みで使っていなかった訳か。
知らぬ間に、マヌケな幻惑をした。

>だったら、その条件を満たすような有理数は存在しないんだろう。
いや、実数論の有理数の稠密性が気になって、素数pは可算無限個あるから、
pを分母に持つ有理数q/p>0を取ったら任意の有理数a>0に幾らでも近似出来て、
あたかもディオファンタス近似の理論の反例になるとも見えるような、
不等式を使った実数(有理数や代数的無理数も含む)の奇妙な評価が評価が得られているんだよ。
そういう訳で、ディオファンタス近似の反例になるのではないかと思って、
いまいち気になっていた。有理数の稠密性は無理数の構成の前提になっているから、
数論のディオファンタス近似の理論は、本当に正しいだろうか? と思ってさ。
ディオファンタス近似の理論は有理数の稠密性に矛盾していない訳か。

468 :132人目の素数さん:2015/03/08(日) 10:27:38.94 ID:ndRfUVoG.net
スレ主よ、おはよう。

469 :132人目の素数さん:2015/03/08(日) 10:32:17.59 ID:ndRfUVoG.net
>>411
>>467の「任意の有理数a>0」は「或る条件を満たす任意の有理数a>0」の間違い。

470 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 10:32:32.83 ID:AXAfK1QO.net
>>419 ハメル基底追加

5.ハメル基底の説明が詳しい(が、Hの濃度が非加算無限まで言っていない。画竜点睛を欠くの感かな? でも良いす)
http://www2.itc.kansai-u.ac.jp/~afujioka/class.html
藤岡敦のホームページ
http://www2.itc.kansai-u.ac.jp/~afujioka/2014/st1/st1.html
2014年度春学期「集合と位相1」
http://www2.itc.kansai-u.ac.jp/~afujioka/2014/st1/140626st1.pdf
§11.選択公理 6月26日分資料(6月20日版)

(余談:googleではなぜか下記の古い方がヒットした)
http://www2.itc.kansai-u.ac.jp/~afujioka/2013/st1/st1.html
2013年度  春学期 集合と位相1
http://www2.itc.kansai-u.ac.jp/~afujioka/2013/st1/130624st1.pdf
§11.選択公理 6月24日分資料(6月18日版)

471 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 10:33:27.84 ID:AXAfK1QO.net
>>468
どうも。スレ主です。
その声は、”おっちゃん”だね
おはようさん

472 :132人目の素数さん:2015/03/08(日) 10:35:14.03 ID:w9eWIo7o.net
休むに似たりの思考

473 :132人目の素数さん:2015/03/08(日) 10:38:07.83 ID:ndRfUVoG.net
>>411
いや、有理直線Qは体でQ^{×}は群だから、>>467は大きな間違いではないな。

474 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 11:03:25.42 ID:AXAfK1QO.net
>>404-405>>418-419>>470

ここは初学者も来るので、ハメル基についてまとめておく

1.>>404の「可分でも何故ベクトルが非可算無限 作れるのか? 」辺りを読むと、おまえら分かってないと。世の中分かってないやつが多い。それが、ハメル基
 (もちろん、おれも分かってないけどw)
2.Karen E. Smithさん女性(でも大学教授)下記(要は、あまり実用にならないよ?)
  "There is no practical way to find a Hamel basis in general, which means we have little use for the concept of a basis for a general innite (especially uncountable) dimensional vector space."
3.もともとは、ハメルさんが、線形な1変数関数がf(x)=axに限ることの反例を構成するのに使ったらしい(正確には”関数方程式f(x+y)=f(x)+f(y)がf(x)=axに限ること”らしい)
4.藤岡敦(関大)などを見れば分かるが、
  ”H をRに対するHamel の基底という. Hamel の基底はベクトル空間に対する基底の概念の特別な場合である.”と
5.結局、Hの濃度が非加算無限は、実数Rが非加算無限であることから導かれると見た
6.つまりは、ハメル基の持つ性質を使って濃度が非加算無限を導くのではなく、Hの構成法から、Rを全て表すためにはHの濃度が非加算無限でなければならないという論理だろう
7.ならば、おっちゃんの出題>>26「複素平面Cの乗法群C^{×}=C-{0}の正規部分群は非可算無限個存在することを示せ。」に、ハメル基を持ち込むことは本末転倒だろう
8.これは>>334-335への答えであり、>>332への補足だ

だれかが、”嵌める基を使う方が簡単に証明できるんだからあってるだろ ”というから
ちょっと突っ込み入れたら、逃げまくったあげく、ハメル基底も分かってないと(まあ上記1です)
Karen E. Smithさんが正しいと思うぞ

追伸
個人的所感だが、
1.ハメル基のおもしろさは、RがQ係数の有限個のハメル基のベクトル空間と見ることができるというところ
2.しかし、残念ながら、H自身は有限どころか、非加算無限
3.かつ、その具体的構成法は与えられていない・・
(以前書いた超越数の記事などを見ると、もし具体的でなくとももう少し使える構成法を与えたら、なにかの賞でも貰えそうかな・・)

475 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 11:22:57.05 ID:AXAfK1QO.net
>>466
どうも。スレ主です。

ID:J8kzGD0aくんか。君にはまだ残っている下記を出題しておく

>>392の問題2
「ゼロを除く複素数の成す乗法群の集合は、連続濃度の”べきの濃度”を持つ」は正しいか否か
理由を付して述べよ

まあ、君には無理だろうがね(笑い)

>スレ主の脳が極めて単純に出来ていることがよく分かった。

お褒めを頂き光栄です。私も、若い頃は複雑なことを考えていた
だが、会社でね、偉くなる人はシンプルな考えをしていると気付いたんだ
「複雑なことを整理してシンプルに考える」。それが出来る人が本当に賢い人だと

君の頭は複雑なままのようだね。下記KISSの原則(法則とも)を、アドバイスしておくよ(笑い)
KISSの原則 http://ja.wikipedia.org/wiki/KISS%E3%81%AE%E5%8E%9F%E5%89%87
(KISS の原則 (KISS principle) とは、"Keep it simple, stupid" (シンプルにしておけ!この間抜け)、もしくは、"Keep it short and simple" (簡潔に単純にしておけ)という経験的な原則[1]の略語。
 その意味するところは、設計の単純性(簡潔性)は成功への鍵だということと、不必要な複雑性は避けるべきだということである。)

(参考)
http://oshiete.goo.ne.jp/qa/237888.html
simple is best は和製英語ですか? 2002/03/19

476 :132人目の素数さん:2015/03/08(日) 13:59:35.95 ID:P7UvCxav.net
>>461-465
正直>>462以降は何が言いたいのかよくわからないが、
>>417の出題で意図された"well-defined"は証明できてないと思われる。

g,h∈G に対して、gN * hN = g*hN と定義したが、
別の g',h'∈G が gN=g'N, hN=h'N を満たすとき、
g'N と h'N の積 g'*h'N が元の g*hN と同じでなければならない。
こういうのが成り立つとき、演算が well-defined であるという。

つまり証明すべきことは
「g,g',h,h'∈G に対し、
   gN=g'N かつ hN=h'N ならば g*hN=g'*h'N」
という命題。

477 :132人目の素数さん:2015/03/08(日) 19:49:52.16 ID:QjV3TEti.net
>>467
>いや、実数論の有理数の稠密性が気になって、素数pは可算無限個あるから、
>pを分母に持つ有理数q/p>0を取ったら任意の有理数a>0に幾らでも近似出来て、
>あたかもディオファンタス近似の理論の反例になるとも見えるような、
>不等式を使った実数(有理数や代数的無理数も含む)の奇妙な評価が評価が得られているんだよ。

いやいや、同じことだろ。
有理数や代数的無理数は、「実際にはその不等式を満たさない」。
もしくは、その評価自体が間違ってる。

どちらにせよ、詳細がぼかしてある以上は、これ以上は話しても無駄だな。

478 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 20:15:14.02 ID:AXAfK1QO.net
>>476
どうも。スレ主です。

>>>417の出題で意図された"well-defined"は証明できてないと思われる。

こっちも、何が言いたいのかよくわからない
出題で意図された"well-defined"を、はっきりさせてくれるかい・・?

と・・、”つまり証明すべきことは
「g,g',h,h'∈G に対し、
   gN=g'N かつ hN=h'N ならば g*hN=g'*h'N」という命題。 ”か・・?

いや、そもそも、"well-defined"については、>>423>>447で2回言及している
後のレスでは、「全く知らないわけじゃないが、well-defined は、多義性があると思うんだ
人によって(というか本とか場面で)微妙にね 」だと

そのときに、話を出して貰えれば早かったんだ
まあ、はっきり言わせて貰えば、あなたのいう"well-defined"は、特殊ケースであって(この問題限り)
一般の"well-defined"の概念自身は、個別の問題を離れた概念だと思っている。それが上で述べたことだよ

そして、あなたのいう"well-defined"なら十分終わっている
エム・ポストニコフでね
それを今から示そう

479 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 20:21:51.87 ID:AXAfK1QO.net
>>478 つづき

”証明すべきことは
「g,g',h,h'∈G に対し、
   gN=g'N かつ hN=h'N ならば g*hN=g'*h'N」という命題。 ”

(証明のあらすじ)
1.実質は、>>461のエム・ポストニコフで終わっている
2.それに、Nが正規部分群であることを組み合わせる
  この場合、下記の中の「G の任意の元 g に対して gN = Ng が成立する」が使い易いだろう
http://ja.wikipedia.org/wiki/%E6%AD%A3%E8%A6%8F%E9%83%A8%E5%88%86%E7%BE%A4 正規部分群

480 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 20:54:00.09 ID:AXAfK1QO.net
>>479 つづき

”証明すべきことは
「g,g',h,h'∈G に対し、
   gN=g'N かつ hN=h'N ならば g*hN=g'*h'N」という命題。 ”

(証明)
1.まず、>>461のエム・ポストニコフより、必要な事項を引用する
2.gN=g'Nより、g'∈Ngで、g'=ng ここに、nは部分群Nのある元とすることができる
3.同様に、hN=h'Nより、h'∈Nhで、h'=n'h ここに、n'は部分群Nのある元とすることができる
4.これと、前述の正規部分群の定義「G の任意の元 g に対して gN = Ng が成立する」を使う
5.正規部分群の定義より、ng=gn”、n'h=hn'”となる元n”、n'”がNに含まれている。n”*n'”=n”'”としておく(n”'”はNの元である)。
6.g'*h'N=ng*n'h N=gn”*n'h N=g(n”*n')h N=g(n”'”)h N
7.ここで再び、(n”'”)h=hn”'””となるNの元n”'””を取ることができる(∵Nは正規部分群だから)
8.よって、g(n”'”)h N=ghn”'”” N=ghN=g*hN (ここで、n”'”” N=Nを使った。また、gh=g*hは積*の定義より)
9.従って、g'*h'N=g*hN が成り立つ
証明おわり

481 :132人目の素数さん:2015/03/08(日) 21:16:52.96 ID:AJ6aUn3m.net
ていねい?とかしゅってん?とか間違い?とか訂正?とか言い訳はいいけど、
(1)-(3)の回答を1レスに納められないって、いろいろと能力を疑うな

482 :132人目の素数さん:2015/03/08(日) 21:39:12.37 ID:Hjn71QWc.net
何事も基礎を固めるのが重要だよ
急がばまわれ
何年もアタフタするより、しっかり本を読めばアホでも長くても半年である程度物にできると言うのに……

483 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 21:43:26.26 ID:AXAfK1QO.net
>>461
余談だが、エム・ポストニコフ の
”Hg'=Hgが証明された。すなわち、剰余類Hgの任意の元g'の剰余類Hg'はHgと一致する
即ち、2つの剰余類が交われば、これらは一致する”

で、これを書いていて思ったのは、
> 3)元g'の剰余類Hg'を考える
> 4)任意の元は、hg'、即ちhh'g, h∈Hと書ける
> 5)hh'∈Hであるから、Hg'の任意の元はHgに属する
> 6)即ちHg'⊂Hg

あたりのからくりが、>>413のからくりに似ていると
つまり、GやHが群を成すから、一つの元g'からつぎつぎに、群の演算で関連事項が紡ぎ出されて、Hg'⊂Hgに到達するんだと
それと、>>413の「連続区間があれば、群演算で結局任意の実数0<rがGに含まれる」という流れに類似性を感じた・・

484 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 21:48:19.33 ID:AXAfK1QO.net
>>481-482
はいはい、口達者なものたちよ

君たちには、まだ残っている下記を出題しておく

>>392の問題2
「ゼロを除く複素数の成す乗法群の集合は、連続濃度の”べきの濃度”を持つ」は正しいか否か
理由を付して述べよ

どうせ、君たちには無理だろうがね(笑い)

485 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 21:51:37.95 ID:AXAfK1QO.net
それと、スレを分けているのは、テクニックだ
どうせ、いままで1000には到達していないんだし

スレの番号が上がる方が、勢いがあると思われるw
それに詰めて書くと、君たち短文しか読めない人にはつらいだろうと(笑い)

486 :132人目の素数さん:2015/03/08(日) 21:52:46.78 ID:6EmqTtpH.net
>>484
はいはい、口すらまともに使えない人

>>392の問題2
「ゼロを除く複素数の成す乗法群の集合は、連続濃度の”べきの濃度”を持つ」は正しいか否か
理由を付して述べよ

君には、まだ残っている下記を出題しておく
どうせ、君には無理だろうがね(笑い)

487 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 22:24:11.39 ID:AXAfK1QO.net
どうも。スレ主です。
>>417の出題者は、はっきりスレ主よりレベル上ですな

>>486のID:6EmqTtpHくんは、はっきり下(笑い)
答えを教えて欲しいと懇願しているのか? 教えてはやらんよ(笑い)

488 :132人目の素数さん:2015/03/08(日) 22:29:22.42 ID:Qm87LPZ3.net
後藤さんよかったね、おめ☆

489 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 22:31:50.47 ID:AXAfK1QO.net
>>417の出題は、一見基本問題だが、普通のテキストでは、おそらく自明ないし簡単に流している部分なんだろう
大学の授業でも先を急ぐから、さらっと流す

おそらく、出題者は、自分で少し考え込んだところを出題したと見た
あまり書物に書いていないが、数学的思考を必要する部分を

それが、さらっと問題として書けるところが、レベルが高いよね
面白い問題だった

ありがとう

490 :132人目の素数さん:2015/03/08(日) 22:33:18.52 ID:8lu3Wqbx.net
はじめの一歩も進めないのに、急ぐとか?

491 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 22:50:08.45 ID:AXAfK1QO.net
>>441の人もレベル高そうだね
例の”おっちゃん”の証明を添削している人かな

492 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 22:55:08.52 ID:AXAfK1QO.net
>>481>>482とは、レベル低そうだな
口だけ達者
どうせ、>>484には答えられないと見た
うかつに答えられないよねー
赤っ恥かく可能性があるからねー、君たちレベルなら(笑い)

493 :132人目の素数さん:2015/03/08(日) 22:57:43.45 ID:khTNl2lG.net
>>489
あの問題、どの辺が面白かったの?

494 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 23:02:04.58 ID:AXAfK1QO.net
>>490
レスする必要もないのかも知れないが
>>417の問題で書いた証明は、何年も前にどこかで見たことを自分なりにアウトプットしただけよ(つまりは、勉強は一通り終わっていると)
スレ主はガロアではない。自分で群論を考え出す力は無いよ。それは、あなたたちも同じはずだ。テキストを読んで、授業で学んで、宿題をして、試験勉強をして、問題が解ける

495 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 23:06:10.97 ID:AXAfK1QO.net
>>493
どうも。スレ主です。

そうだね、やはり問題(3)で、well-defined(結果の一意性)を示すために、エムポストニコフを読み直したことかな、久しぶりに
エムポストニコフの証明は、なんど読んでも鮮やかで、感心するね

496 :132人目の素数さん:2015/03/08(日) 23:08:35.88 ID:il0Z6Fow.net
>>495
(1)がヒントってのはわざとオミットしてたの?

497 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 23:09:26.38 ID:AXAfK1QO.net
>>495 補足

(1)(2)は、落ち着いて問題を読んだら、解答はすぐ浮かんだけどね
まあ、この板では証明は書きにくい。逆元なんて手で書けば−1を肩に書けばしまいだが、アスキーで書くとなると一工夫必要だし・・

498 :132人目の素数さん:2015/03/08(日) 23:11:49.27 ID:il0Z6Fow.net
そうなんだ、いろいろとたいへんだね

499 :現代数学の系譜11 ガロア理論を読む:2015/03/08(日) 23:12:24.83 ID:AXAfK1QO.net
>>496
? 誘導問? 気付かなかったね (大学入試の大問の中の(1)(2)(3)みたいな配列かい?)
個人的には(3)が一番題意が取りやすかった

500 :132人目の素数さん:2015/03/08(日) 23:15:25.67 ID:il0Z6Fow.net
そんなこと言うと、出題者さん泣いちゃうよ><
せっかく親切にしてくれたのに

501 :132人目の素数さん:2015/03/08(日) 23:17:20.31 ID:VjCS44NK.net
(1)の証明って終ったの?
でいろいろ指摘されてたけど

502 :132人目の素数さん:2015/03/08(日) 23:38:34.38 ID:Hjn71QWc.net
キモい
せっかく親切心でレスしてやったのに再び見に来たら罵倒されてるし
数学なんてやめたら?
continueじゃなくて、restartするべきだよ

503 :132人目の素数さん:2015/03/08(日) 23:39:49.64 ID:P7UvCxav.net
以前、「正規部分群の問題」とか言って出てきたのがちょっとアレだったので
もうちょっとマトモなものをと思って>>417を出した。


>>480
はい、よくできましたっと
(n"'"の置き方をミスってるような気がするが)

>>417の文脈で well-difined ときたら普通は>>476のように解釈すると思うんだが
俺が勉強不足なんだろうか。第三者の意見がないと何とも

>>499
題意取れてなかったじゃないですかー

504 :132人目の素数さん:2015/03/09(月) 18:29:00.33 ID:xxNMxkkG.net
くだらん
あほか?

505 :132人目の素数さん:2015/03/09(月) 20:50:34.73 ID:ar9H3cST.net
http://jbbs.shitaraba.net/sports/42269/

506 :132人目の素数さん:2015/03/10(火) 10:26:58.77 ID:+DhpSksz.net
>>504
スレ主はぱーちくりん

507 :132人目の素数さん:2015/03/12(木) 16:22:42.92 ID:KvT+3nBA.net
>>279
>>239-240は次のように訂正。

[第5段]:任意の2>s>1>t>0なるs、t∈R\Qに対してT(s)≠T(t)であることを示す。
確かに任意のθ∈R\Qに対して群T(θ)は定まる。
矛盾に導くため、或る2>s>1>t>0なるs、t∈R\Qが存在して、T(s)=T(t)であったとする。
すると、T(s)、T(t)は両方共に複素平面Cの単位円周C’上の部分集合であるから、
或る(m,n)∈(Z\{0})^2が存在して、e^{i(msπ)}=e^{i(ntπ)}…@。
ここで、自然数a≧2を任意に取る。すると、2>s>1>t>0から、1>s/a>1/a>t/a>0
である。また、N∪{0}、Zは両方共に可算無限集合である。よって、
A(s/a)={e^{im_1・(s/a)π}|m_1∈Z}、B(t/a)={e^{im_1・(t/a)π}|a∈Z}
とおくと、A(s/a)、B(t/a)は両方共に可算無限群である。そして、m_1を整数変数とすると、
f(a,m_1):B(t/a)∋e^{im_1・(t/a)π}→e^{im_1・(s/a)π}∈A(s/a)
はB(t/a)からA(s/a)への同型写像である。自然数a≧2は任意だから、
aを走らせて考えて、A(s/a)、B(t/a)、f(a,m_1)のa≧2についての各和集合
∪A(s/a)={e^{im_1・sπ}|m_1∈Q}、 ∪B(t/a)={e^{im_1・tπ}|m_1∈Q}、
∪f(a,m_1)={f(a,m_1):B(t/a)∋e^{im_1・(t/a)π}
               →e^{im_1・(s/a)π}∈A(s/a)|a∈N\{0,1}、m_1∈Zは変数}
を、それぞれ、A=∪A(s/a)、B=∪B(t/a)、F=∪f(a,m_1)
とおけば、A、Bは両方共にC’上における可算無限巡回群であり、
Fは自然数a≧2により定まるB(t/a)からA(s/a)への同型写像の可算無限集合である。

508 :132人目の素数さん:2015/03/12(木) 16:26:22.60 ID:KvT+3nBA.net
>>279
(>>507の続き)
各a≧2に対して同型写像f(a,m_1):B(t/a)→A(s/a)はaにより定まる
から、m_1を有理数変数として、BからAへの写像gを
g:B∋e^{im_1・tπ}→e^{im_1・sπ}∈A で定義すると、
gはBからAへの準同型である。ここで、e^{i(msπ)}∈T(s)⊂Aであり、e^{i(ntπ)}∈T(t)⊂Bだから、
@から、e^{i(msπ)}=e^{i(ntπ)}∈A∩Bであり、よってg(e^{i(ntπ)})=e^{i(nsπ)}
からg(e^{imsπ})=e^{insπ}…A。一方、e^{i(-m)sπ}∈T(s)⊂Aであり、
e^{i(-m)tπ}∈T(t)⊂Bだから、同様に@に注意して考えると、
g(e^{i(-m)tπ})=e^{i(-m)sπ}=e^{i(-n)tπ}…B。
よって、g:B→Aは準同型であることに注意すると、A、Bから、
g(e^{im(s-t)π})=e^{in(s-t)π}が得られ、e^{im(s-t)π}∈B、e^{in(s-t)π}∈A。
故に、或るm_1、m_2∈Qが存在してm_1・s=m(s-t)、m_2・t=n(s-t)となる。
ここで、s>t>0からt、s-t≠0であり、m、n∈Z\{0}だからm_1、m_2≠0。
従って、(m_1・s)/(m_2・t)=m/nから、s=((m・m_2)/(m_1・n))・tである。
x=m・m_2、y=m_1・nとおくと、x、y∈Z\{0}であり、s=(x/y)t
T(s)=T(t)だったから、|x|≠|y|とはなり得ず、|x|=|y|から、x=±y。
Case1):x=yのとき。このとき、s=tであり、s>tに反し矛盾。
Case2):x=-yのとき。このとき、s=-tからs+t=0であるが、これはs+t>0に反し矛盾。
Case1、2から、2>s>1>t>0なるs、t∈R\Qが存在して、T(s)=T(t)であったとすると矛盾。

[第6段]:任意の|s|>|t|かつ-1<s<0<t<1なるs、t∈R\Qに対してT(s)≠T(t)であることを示す。
θを実変数とするとe^{iθπ}はmod2の周期関数であるから、第5段の結果から従う。

[第7段]:任意の1>s>t>0なるs、t∈R\Qに対してT(s)≠T(t)であることを示す。
複素平面Cは実軸について対称であるから、第6段の結果から従う。

[第8段];乗法群C^{×}の正規部分群は非可算個存在することを示す。
開区間(0,1)は非可算であるから、乗法群C^{×}の正規部分群は非可算個存在する。

509 :132人目の素数さん:2015/03/12(木) 16:28:46.82 ID:KvT+3nBA.net
まあ、細かいことは後で。ちょっと寝る。

510 :132人目の素数さん:2015/03/12(木) 17:06:26.57 ID:Mah1XYlY.net
>>507-508
今までと全く同じミスを繰り返している。その議論では
「 s,t∈R−Q, T(s)=T(t), s>t>0 」という条件しか使っていないので、
「 s,t∈R−Q, T(s)=T(t), s>t>0 ならば 矛盾」が証明できたことになり、
従って「 s,t∈R−Q, s>t>0 ならば T(s)≠T(t)」が証明できたことになるが、
これには反例があるのだった(s=√2+2, t=√2 など)。
よって、今回の議論も自動的に間違っていることになる。

>ここで、自然数a≧2を任意に取る。すると、2>s>1>t>0から、1>s/a>1/a>t/a>0

この部分では、あたかも 2>s>1>t>0 を使っているかのように見えるが、
そこから得られる「 1>s/a>1/a>t/a>0 」という不等式は その後の議論で
全く使われてないので、実際には「2>s>1>t>0」という条件は使われてないことになる。
そして、証明をよく読むと、実際に使われている条件は
「 s,t∈R−Q, T(s)=T(t), s>t>0 」
のみである(よって、自動的に間違っている)。

511 :132人目の素数さん:2015/03/12(木) 17:13:54.33 ID:Mah1XYlY.net
あと、いま気づいたことだが、>>507の[第5段]は、
そもそも命題自体が間違っている。
以下で[第5段]の反例を挙げる。

0<α<1なる無理数αを1つ取り、t=α, s=2−αと置くと、
s,t∈R−Q かつ 2>s>1>t>0 が成り立つことが分かる。
さらに、T(s)=T(t) が成り立つことが確かめられる。
よって、[第5段]はそもそも命題自体が間違っている。


一応補足しておくと、[第7段] の命題は正しくて、
これさえ示せれば目標は達成される。
(ただし、今回のお前の論法では [第7段] は示せてないってこと。)

512 :132人目の素数さん:2015/03/13(金) 13:36:11.32 ID:hKmg+Ort.net
>>279
示すべき命題(予想とでもいうのか)が間違っていたようで、>>239-240は次のように訂正。
道理で幾度も間違いをしていた訳だ。完全な盲点になっていた。

[第5段]:任意の1>s>t>0なるs、t∈R\Qに対してT(s)≠T(t)であることを示す。
確かに任意のθ∈R\Qに対して群T(θ)は定まる。
矛盾に導くため、或る1>s>t>0なるs、t∈R\Qが存在して、T(s)=T(t)であったとする。
すると、T(s)、T(t)は両方共に複素平面Cの単位円周C’上の部分集合であるから、
任意の有理数aに対し、{a,s}、{a,t}は有理数体Q上線型独立であることに注意して、
m、nを整数変数とすると、任意のe^{i(ms)π}∈T(s)(或いは任意のe^{i(nt)π}∈T(t))に対して
或るe^{i(nt)π}∈T(t)(同じく続けて或るe^{i(ms)π}∈T(s))が一意に定まって、
e^{i(ms)π}=e^{i(nt)π}。即ち、T(s)からT(t)への全単射が存在する。
よって、e^{isπ}∈T(s)に対して或るn∈Z\{0}が一意に存在して、e^{isπ}=e^{i(nt)π}…@。
また、e^{itπ}∈T(t)に対して或るm∈Z\{0}が一意に存在して、e^{itπ}=e^{i(ms)π}…A。
Case1):mn≧2のとき。@、Aから、e^{isπ}=e^{i(mn)sπ}、e^{itπ}=e^{i(mn)tπ}。
よって、mn≧2から、T(s)、T(t)は両方共に位数mn-1の有限巡回群になって矛盾。
Case2):mn≦-2のとき。@、Aから、e^{isπ}=e^{i(-mn)sπ}、e^{itπ}=e^{i(-mn)tπ}。
よって、-mn≧2から、T(s)、T(t)は両方共に位数|mn|-1=-(mn+1)の有限巡回群になって矛盾。

513 :132人目の素数さん:2015/03/13(金) 13:40:55.88 ID:hKmg+Ort.net
>>279
(>>512の続き)
Case3):mn=1のとき。このとき、m=n=1またはm=n=-1。
Case3-1):m=n=1のとき。n=1(m=1)、@(A)から、e^{isπ}=e^{itπ}。
故に、偏角の不定性から両辺に主値を取ると、或るk∈Zが存在して、s=t+2k。
よって、s>tから、t+2k>tであり、k≧1。t>0だから、
1<t+2kを得るが、一方1>s=t+2kであり、1<t+2kに反し矛盾。
Case3-2):m=n=-1のとき。このとき、@(A)から、e^{i(s+t)π}=1を得る。
故に、偏角の不定性から両辺に主値を取ると、或るk∈Zが存在して、s+t=2k。
然るに1>s>0、1>t>0から2>s+t>0であり、2>2k>0から、
1>k>0なる整数kが存在することになって矛盾。
Case3-1、Case3-2から、mn=1のとき矛盾。   (Case3終)
Case4):mn=-1のとき。このとき、m=1、n=-1 または m=-1、n=1。
Case4-1):m=1、n=-1のとき。このとき、n=-1、@から、
e^{isπ}=e^{i(-t)π}であり、e^{i(s+t)π}=1。故に、Case3-2と同様に考えると矛盾。
Case4-2):m=-1、n=1のとき。このとき、m=-1、Aから、
e^{i(-s)π}=e^{itπ}であり、e^{i(s+t)π}=1。故に、Case3-2(Case4-1)と同様に矛盾。
Case4-1、Case4-2から、mn=-1のとき矛盾。   (Case4終)
Case1〜Case4から、1>s>t>0なるs、t∈R\Qが存在して、T(s)=T(t)であったとすると矛盾。

[第6段]:乗法群C^{×}の正規部分群は非可算個存在することを示す。
開区間(0,1)は非可算であるから、乗法群C^{×}の正規部分群は非可算個存在する。

514 :132人目の素数さん:2015/03/13(金) 16:40:30.18 ID:hKmg+Ort.net
>>279
>>512のCase2は次のように訂正:
>Case2):mn≦-2のとき。@、Aから、e^{isπ}=e^{i(mn)sπ}、e^{itπ}=e^{i(mn)tπ}
>であり、e^{i(-s)π}=e^{i(-mn)sπ}、e^{i(-t)π}=e^{i(-mn)tπ}。また、点1はT(s)、T(t)の単位元である。
>T(s)の点e^{i(-s)π}はe^{isπ}∈T(s)の逆元であり、T(t)の点e^{i(-t)π}はe^{itπ}∈T(t)の逆元である。
>T(s)、T(t)は単位円周C’上の群だから、-mn≧2から、T(s)、T(t)は両方共に
>位数(|mn|+2)-1=|mn|+1=-mn+1の有限巡回群になって矛盾。

515 :132人目の素数さん:2015/03/13(金) 16:44:20.68 ID:xRYOqgaS.net
>>512-513
正解。すばらしい。1>s>t>0 という条件も本質的に全て使われている。
大切なのは、T(t)=T(s)から導かれる

>よって、e^{isπ}∈T(s)に対して或るn∈Z\{0}が一意に存在して、e^{isπ}=e^{i(nt)π}…@。
>また、e^{itπ}∈T(t)に対して或るm∈Z\{0}が一意に存在して、e^{itπ}=e^{i(ms)π}…A。

この2行である。今までは、T(t)=T(s)から

「 ある n,m∈Z−{0} が存在して e^{i(ms)π}=e^{i(nt)π} 」… (*)

しか導いていなかったから上手く行かなかったのであり、
ここからさらに踏み込んで、より便利な @,A を導いたのが成功の鍵なのだ。

実際、T(t)=T(s)が成り立つことと@&A が成り立つことは同値となるので、
@&A を使うことは「 T(t)=T(s) 」を完全に使っていることを意味する。
一方で、T(t)=T(s)と(*)は同値にならないので、(*)ばかり使っていた今までの議論では、
「 T(t)=T(s) 」を完全には使っていなかったことになる。

516 :132人目の素数さん:2015/03/13(金) 16:48:30.85 ID:xRYOqgaS.net
ちなみに、

>示すべき命題(予想とでもいうのか)が間違っていたようで、>>239-240は次のように訂正。
>道理で幾度も間違いをしていた訳だ。完全な盲点になっていた。

盲点もクソもなくて、俺は>>347の時点で最初から「これは正しくて、証明も簡単に済む」と
指摘していたのであり、実際お前は>>347以降の しばらくの間、今回と全く同じ命題について
直接的な証明を試みていたのだ。それが上手く行かなかったからといって、途中で勝手に
「2>s>1>t>0」という条件に差し替えて悪戦苦闘していたのが今までの流れである。
そして、今回は>>347の方針に逆戻りしたに過ぎないのだ。

で、今回と>>347の違いは上のレスで既に説明した。
単にお前が、(*)よりも強い@&Aに気づいただけの話である。

517 :現代数学の系譜11 ガロア理論を読む:2015/03/13(金) 22:32:55.89 ID:09ioS4MW.net
>>506
ぱーちくりん連呼くんか・・
これから、君を”連呼くん”と呼ぼう>>398

”連呼くん”には、>>392の問題1を出しておいた。易しい方の問題だ。>>80で2015/02/21(土) だったね
>>406 名前:132人目の素数さん[sage] 投稿日:2015/03/07(土) 15:59:06.20 ID:Pt6N2tUG さんがあっさり解いたね

>>502 ID:Hjn71QWc くんか・・口達者なものよ、君には宿題を出しておいたが、できたか? >>484

お二人には、再度問題を書いておく

>>392の問題2
「ゼロを除く複素数の成す乗法群の集合は、連続濃度の”べきの濃度”を持つ」は正しいか否か
理由を付して述べよ

どうせ、君たちには無理だろうがね(笑い) ふふ、”何事も基礎を固めるのが重要だよ 急がばまわれ”、”数学なんてやめたら? continueじゃなくて、restartするべきだよ”か、上手いことを言うね、口先くん。君の数学の実力を見せてくれ
ハメル基でも何でも使えよ・・、使えるものならね(笑い)
「ゼロを除く複素数の成す乗法群」なんて、基礎の基礎。さぞかし簡単でしょう(笑い) おそら次の週も同じことが書けそうだな・・

518 :現代数学の系譜11 ガロア理論を読む:2015/03/14(土) 00:10:44.17 ID:1ktc1FSG.net
>>515-516
ID:xRYOqgaSは、メンターさんか・・

>>512-514
ID:hKmg+Ort は、”おっちゃん”か・・
”おっちゃん”の証明を見ると、かつてのコテKummerさんを思い出すよ・・

メンターさんが、”おっちゃん”の証明を追う忍耐は驚異的です
頭が下がります

519 :現代数学の系譜11 ガロア理論を読む:2015/03/14(土) 00:21:39.61 ID:1ktc1FSG.net
>>503
well-difined ね

”つまり証明すべきことは
「g,g',h,h'∈G に対し、
   gN=g'N かつ hN=h'N ならば g*hN=g'*h'N」という命題。 ”

>>423 http://ja.wikipedia.org/wiki/Well-defined の後があった・・「代入原理と呼ばれる条件」(下記だね)

例えば、写像あるいは(一価の)関数 f は代入原理と呼ばれる条件

a = b → f(a) = f(b)

を満たす対応(一意対応)でなければならないから、同値類に対する写像をその代表元を用いて定義しようとする場面などでは well-defined 性が問題になる。
典型的なものが、代数学において商代数系(商群や商環、商ベクトル空間など)の演算を導入する場面に現れる。

鎖複体の射からホモロジー(これは鎖複体から定まるある商加群である)の間の準同型が誘導されるが、このときも well-defined 性が問題になる。
上述の一意性に加え、写像の行き先が実際に終域に入っていることを確かめなくてはならない。
(引用おわり)

余談だが、英文では、3つに分けて説明しているね
http://en.wikipedia.org/wiki/Well-defined

Well-defined functions

Operations

Well-defined notation

520 :132人目の素数さん:2015/03/14(土) 00:23:05.43 ID:EELCrdHf.net
数少ない支援者の後藤さんを応援してあげてよw

521 :現代数学の系譜11 ガロア理論を読む:2015/03/14(土) 05:53:01.88 ID:1ktc1FSG.net
>>520
どうも。スレ主です。
ID:EELCrdHfさんか

後藤さんとは、>>417を出題した人のことかな?
君は、>>488で「後藤さんよかったね、おめ☆ 」と書いていたね
が、>>356では「後藤さん張り切ってるね」で、後藤さん=”おっちゃん”と読める
はて? 両者は別人だろう?

まあ、ともかく、>>417の出題者と、”おっちゃん”とが、支援者というのは納得です

522 :現代数学の系譜11 ガロア理論を読む:2015/03/14(土) 06:03:04.26 ID:1ktc1FSG.net
>>519
well-difined は、はっきりさせておきたい
ここは初学者も来るからね

wikipedia にあるように
「写像あるいは(一価の)関数 f は代入原理と呼ばれる条件 a = b → f(a) = f(b)
を満たす対応(一意対応)でなければならないから、同値類に対する写像をその代表元を用いて定義しようとする場面などでは well-defined 性が問題になる。
典型的なものが、代数学において商代数系(商群や商環、商ベクトル空間など)の演算を導入する場面に現れる。」と

つまりは、well-defined 性とは、代入原理と呼ばれる条件 a = b → f(a) = f(b)が成り立つかどうかと

英wikipedia では
Well-defined functions
All functions are well-defined binary relations: if there exist two ordered pairs in the function with the same first coordinate, then the two second coordinates must be equal.
More precisely, if (x,y) and (x,z) are elements the function f, then y=z.
Because the output assigned to x is unique in this sense, it is acceptable to use the notation f(x)=y (and/or f(x)=z) and to take advantage of the symmetric and transitive properties of equality.
Thus if f(x)=y and f(x)=z, then of course y=z.

An equivalent way of expressing the definition above is this: given two ordered pairs (a,b) and (c,d), the function f is well-defined iff whenever a=c it is the case that b=d.
The contrapositive of this statement, which is equivalent and sometimes easier to use, says that b≠d implies a≠c.
In other words, "different outputs must come from different inputs."

In group theory, the term well-defined is often used when dealing with cosets, where a function on a quotient group may be defined in terms of a coset representative.
Then the output of the function must be independent of which coset representative is chosen.

523 :現代数学の系譜11 ガロア理論を読む:2015/03/14(土) 06:39:39.82 ID:1ktc1FSG.net
>>522 つづき
英wikipedia の記述が難しく、意味がとれないところがあるが(英文だしね)(^^
日wikipedia の”(一価の)関数 f は代入原理と呼ばれる条件 a = b → f(a) = f(b) を満たす対応(一意対応)でなければならない”を正としよう

で、私がやったことは、まさにこれ(日wikipedia )
>>461で、「(2) 定義がもともとの対象から複数定まる対象を経由して行われる場合、結果がもともとの対象にのみ依存する。」を示すことにする と

そして、「Hg'=Hgが証明された。すなわち、剰余類Hgの任意の元g'の剰余類Hg'はHgと一致する
即ち、2つの剰余類が交われば、これらは一致する
また、剰余類Hgは、g∈Hのとき、そのときに限り部分群Hと一致する。(部分群Hは単位元eの剰余類と見なすことができる) 」を証明した

次に、>>462で、整列可能定理と剰余類別 G/Nも一意(正規部分群だから)を示した
この方針は、>>447に書いた、(部分群Hに対して)「一般に剰余類が、右剰余類が1通り、左剰余類が1通り、計2通り。正規部分群なら、1通り。」によった

で、”つまり証明すべきことは
「g,g',h,h'∈G に対し、
   gN=g'N かつ hN=h'N ならば g*hN=g'*h'N」という命題。 ”
 ↓↑
”(一価の)関数 f は代入原理と呼ばれる条件 a = b → f(a) = f(b) を満たす対応(一意対応)でなければならない”
(同値)が言えるのかね? 

>>478で述べたように、私は(一意対応)を直接示したから、あなたのいう"well-defined"なら十分終わっている と(つまり一意対応から、「積も一意」はすぐ示せる)
が、問題は「g,g',h,h'∈G に対し、gN=g'N かつ hN=h'N ならば g*hN=g'*h'N」→(一意対応)が言えるのか?
gNの定義をしっかりしていれば言える? でも、gNの定義の過程で代入原理 a = b → f(a) = f(b) (一意対応)を先に示してしまえば、そこで終わってる話と思うのだが・・

総レス数 818
503 KB
新着レスの表示

掲示板に戻る 全部 前100 次100 最新50
read.cgi ver.24052200